Metallization of Carbon Fiber-Reinforced Plastics (CFRP): Influence of Plasma Pretreatment on Mechanical Properties and Splat Formation of Atmospheric Plasma-Sprayed Aluminum Coatings
IF 2.9 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
Christian Semmler, Willi Schwan, Andreas Killinger
{"title":"Metallization of Carbon Fiber-Reinforced Plastics (CFRP): Influence of Plasma Pretreatment on Mechanical Properties and Splat Formation of Atmospheric Plasma-Sprayed Aluminum Coatings","authors":"Christian Semmler, Willi Schwan, Andreas Killinger","doi":"10.3390/coatings14091169","DOIUrl":null,"url":null,"abstract":"Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091169","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber-reinforced plastics (CFRPs) have broad applications as lightweight structural materials due to their remarkable strength-to-weight ratio. Aluminum is often used as a bond coating to ensure adhesion between CFRPs and further coatings with a higher melting temperature. However, challenges persist in optimizing their surface properties and adhesion attributes for diverse applications. This investigation explores the impact of sandblasting and plasma pretreatment on CFRP surfaces and their influence on plasma-sprayed aluminum coatings. Two distinct CFRP substrates, distinguished by their cyanate ester and epoxy resin matrices, and two different aluminum powder feedstocks were employed. Plasma pretreatment induced micro-surface roughening in the range of 0.5 µm and significantly reduced the contact angles on polished specimens. Notably, on sandblasted specimens, plasma-activated surfaces displayed improved wetting behavior, which is attributed to the removal of polymeric fragments and augmented fiber exposure. Aluminum splats show a better interaction with carbon fibers compared to a polymeric matrix material. The impact of plasma activation on the coating adhesion proved relatively limited. All samples with plasma activation had deposition efficiencies that increased by 12.5% to 34.4%. These findings were supported by SEM single-splat analysis and contribute to a deeper comprehension of surface modification strategies tailored to CFRPs.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material