用于 3YSZ/CNT 复合材料热屏蔽的气溶胶沉积 8YSZ 涂层

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Coatings Pub Date : 2024-09-13 DOI:10.3390/coatings14091186
Maria Wiśniewska, Grzegorz Kubicki, Mateusz Marczewski, Volf Leshchynsky, Luca Celotti, Mirosław Szybowicz, Dariusz Garbiec
{"title":"用于 3YSZ/CNT 复合材料热屏蔽的气溶胶沉积 8YSZ 涂层","authors":"Maria Wiśniewska, Grzegorz Kubicki, Mateusz Marczewski, Volf Leshchynsky, Luca Celotti, Mirosław Szybowicz, Dariusz Garbiec","doi":"10.3390/coatings14091186","DOIUrl":null,"url":null,"abstract":"High-temperature conditions are harmful for carbon nanotube-based (CNT-based) composites, as CNTs are susceptible to oxidation. On the other hand, adding CNTs to ceramics with low electrical conductivity, such as 3YSZ, is beneficial because it allows the production of complex-shaped samples with spark plasma sintering (SPS). A shielding coating system may be applied to prevent CNT oxidation. In this work, the 8YSZ (yttria-stabilized zirconia) thermal shielding coating system was deposited by aerosol deposition (AD) to improve the composite’s resistance to CNT degradation without the use of bond-coat sublayers. Additionally, the influence of the annealing process on the mechanical properties and microstructure of the composite was evaluated by nanoindentation, scratch tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), flame tests, and light microscopy (LM). Annealing at 1200 °C was the optimal temperature for heat treatment, improving the coating’s mechanical strength (the first critical load increased from 0.84 N to 3.69 N) and promoting diffusion bonding between the compacted powder particles and the substrate. The deposited coating of 8YSZ increased the composite’s thermal resistance by reducing the substrate’s heating rate and preventing the oxidation of CNTs.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerosol-Deposited 8YSZ Coating for Thermal Shielding of 3YSZ/CNT Composites\",\"authors\":\"Maria Wiśniewska, Grzegorz Kubicki, Mateusz Marczewski, Volf Leshchynsky, Luca Celotti, Mirosław Szybowicz, Dariusz Garbiec\",\"doi\":\"10.3390/coatings14091186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature conditions are harmful for carbon nanotube-based (CNT-based) composites, as CNTs are susceptible to oxidation. On the other hand, adding CNTs to ceramics with low electrical conductivity, such as 3YSZ, is beneficial because it allows the production of complex-shaped samples with spark plasma sintering (SPS). A shielding coating system may be applied to prevent CNT oxidation. In this work, the 8YSZ (yttria-stabilized zirconia) thermal shielding coating system was deposited by aerosol deposition (AD) to improve the composite’s resistance to CNT degradation without the use of bond-coat sublayers. Additionally, the influence of the annealing process on the mechanical properties and microstructure of the composite was evaluated by nanoindentation, scratch tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), flame tests, and light microscopy (LM). Annealing at 1200 °C was the optimal temperature for heat treatment, improving the coating’s mechanical strength (the first critical load increased from 0.84 N to 3.69 N) and promoting diffusion bonding between the compacted powder particles and the substrate. The deposited coating of 8YSZ increased the composite’s thermal resistance by reducing the substrate’s heating rate and preventing the oxidation of CNTs.\",\"PeriodicalId\":10520,\"journal\":{\"name\":\"Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/coatings14091186\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

高温条件对碳纳米管复合材料有害,因为碳纳米管容易氧化。另一方面,在导电率低的陶瓷(如 3YSZ)中添加碳纳米管是有益的,因为这样可以利用火花等离子烧结(SPS)技术生产形状复杂的样品。可以使用屏蔽涂层系统来防止 CNT 氧化。在这项工作中,通过气溶胶沉积(AD)沉积了 8YSZ(钇稳定氧化锆)热屏蔽涂层系统,以提高复合材料的抗 CNT 降解性能,而无需使用粘结涂层子层。此外,还通过纳米压痕、划痕试验、扫描电子显微镜(SEM)、X 射线衍射(XRD)、火焰试验和光学显微镜(LM)评估了退火工艺对复合材料机械性能和微观结构的影响。1200 ℃退火是热处理的最佳温度,可提高涂层的机械强度(第一临界载荷从 0.84 N 增加到 3.69 N),并促进压实粉末颗粒与基底之间的扩散结合。8YSZ 沉积涂层降低了基底的加热速率,防止了 CNT 氧化,从而提高了复合材料的耐热性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerosol-Deposited 8YSZ Coating for Thermal Shielding of 3YSZ/CNT Composites
High-temperature conditions are harmful for carbon nanotube-based (CNT-based) composites, as CNTs are susceptible to oxidation. On the other hand, adding CNTs to ceramics with low electrical conductivity, such as 3YSZ, is beneficial because it allows the production of complex-shaped samples with spark plasma sintering (SPS). A shielding coating system may be applied to prevent CNT oxidation. In this work, the 8YSZ (yttria-stabilized zirconia) thermal shielding coating system was deposited by aerosol deposition (AD) to improve the composite’s resistance to CNT degradation without the use of bond-coat sublayers. Additionally, the influence of the annealing process on the mechanical properties and microstructure of the composite was evaluated by nanoindentation, scratch tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), flame tests, and light microscopy (LM). Annealing at 1200 °C was the optimal temperature for heat treatment, improving the coating’s mechanical strength (the first critical load increased from 0.84 N to 3.69 N) and promoting diffusion bonding between the compacted powder particles and the substrate. The deposited coating of 8YSZ increased the composite’s thermal resistance by reducing the substrate’s heating rate and preventing the oxidation of CNTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信