{"title":"Amino Acid Quantification from Maize Tissues.","authors":"Huda Ansaf, Abou Yobi, Ruthie Angelovici","doi":"10.1101/pdb.top108440","DOIUrl":"https://doi.org/10.1101/pdb.top108440","url":null,"abstract":"<p><p>Amino acid analysis is a vital part of analytical biochemistry. The increasing demand for low nitrogen fertilization and for plant-based diets with balanced amino acid levels and composition have made it crucial to develop reliable, fast, and affordable methods for analyzing amino acids in plants. As maize accounts for 43% of global cereal production, improving the amino acid composition of its kernels (i.e., seeds) is critically important for meeting the dietary requirements of humans and livestock. Moreover, amino acid quantification in maize leaves is necessary for improving yield prediction, stress sensing, and nitrogen use efficiency. Many amino acid quantification methods use reverse-phase high-pressure liquid chromatography and gas chromatography approaches to assess the amino acid content of maize tissues. Historically, these techniques involved the use of chemical derivatization, a chemical reaction that alters the properties of a compound to make it detectable or more sensitive to detection. Although accurate, these methods are time-consuming, expensive, and unsuitable for large populations. Here, we introduce two high-throughput methods for quantifying amino acids from large maize populations, such as those used for quantitative trait locus mapping, genome-wide association studies, and large mutant populations. Both methods use an ultraperformance liquid chromatography-tandem mass spectrometry instrument to quantify all 20 proteogenic amino acids in a maize tissue in a short run time. A dependable, affordable, and high-throughput method for quantifying amino acids in maize has important implications for assessing kernel quality, yield, and management efficacy, such as fertilizer usage and watering.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examining Cell-Specific Localization in <i>Aedes aegypti</i> Tissues with Fluorescence In Situ Hybridization.","authors":"Farwa Sajadi, Jean-Paul V Paluzzi","doi":"10.1101/pdb.prot108280","DOIUrl":"10.1101/pdb.prot108280","url":null,"abstract":"<p><p>Fluorescence in situ hybridization (FISH) is a macromolecular recognition tool that uses RNA or DNA fragments combined with fluorophore- or digoxigenin-coupled nucleotides as probes to examine transcript localization through the presence or absence of complementary sequences in fixed tissues or samples under a fluorescent microscope. FISH technology has been highly effective for mapping genes and constructing a visual map of animal genomes. Here, we describe the application of FISH technology in the <i>Aedes aegypti</i> mosquito, where it is specifically used to localize receptor transcripts in gut tissues/organs. The methods presented highlight the synthesis of RNA probes and describe the 2-d process of incubating the tissues/organs with the RNA probes. We also describe tyramide signal amplification for improved signal detection.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108280"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangke Xu, Jason Y Tann, Oliver R Wilkes, Adrian W Moore
{"title":"Filleting and Immunostaining of Larvae to Visualize <i>Drosophila</i> Dendritic Arborization Neuron Dendrite Arbors.","authors":"Fangke Xu, Jason Y Tann, Oliver R Wilkes, Adrian W Moore","doi":"10.1101/pdb.prot108148","DOIUrl":"10.1101/pdb.prot108148","url":null,"abstract":"<p><p>Nervous system formation involves the specification of neuron identity, followed by precise circuit construction; this includes controlling the pattern and connectivity of the dendrite arbor. <i>Drosophila</i> dendritic arborization (da) neurons are a powerful experimental model for studying dendrite arbor differentiation mechanisms. da neuron dendrite arbors elaborate in two dimensions in the body wall, making it easy to visualize them with high resolution. Immunostaining is a conventional method to examine arbor pattern and the subcellular distribution of proteins. In addition, images acquired from immunostaining protocols can amplify weaker signals from fluorescent transgenic proteins and be used to quantify protein expression levels. This protocol describes a broadly applicable dissection, fixation, and immunostaining approach in <i>Drosophila</i> larvae.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108148"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Membrane Protein Fractionation and Analysis through Western Blot in <i>Aedes aegypti</i> Malpighian Tubules.","authors":"Britney Picinic, Jean-Paul V Paluzzi","doi":"10.1101/pdb.prot108283","DOIUrl":"10.1101/pdb.prot108283","url":null,"abstract":"<p><p>Western blot analysis is a well-known and dependable technique used to quantify protein abundance in a wide variety of samples. A major consideration for running a successful western blot is ensuring that the protein to be analyzed is purified appropriately. For work with membrane-bound proteins, traditional methods of protein processing such as the use of high-frequency sonication and ultracentrifugation to separate proteins from the membrane are being replaced with less time-consuming approaches. The use of a membrane fractionation kit, which involves the separation of membrane proteins from soluble (cytosolic) proteins, is effective in allowing for the quantification and analysis of membrane-bound proteins. In this protocol, we describe use of the membrane fractionation kit to isolate membrane-bound proteins, followed by western blot analysis, to observe protein abundance. The protocol involves methods that require organ (or tissue) collection, followed by protein processing, and a 2-d western blot procedure.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108283"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farwa Sajadi, Salwa Afifi, Britney Picinic, Jean-Paul V Paluzzi
{"title":"Mapping Transcript Cell-Specific Localization and Protein Subcellular Localization in the Adult Mosquito <i>Aedes aegypti</i>.","authors":"Farwa Sajadi, Salwa Afifi, Britney Picinic, Jean-Paul V Paluzzi","doi":"10.1101/pdb.top107698","DOIUrl":"10.1101/pdb.top107698","url":null,"abstract":"<p><p>This introduction reviews techniques used to examine the distribution and expression of gene transcripts and proteins in a variety of tissues/organs in the medically important global disease vector mosquito, <i>Aedes aegypti</i> Specifically, these methods allow the detection of cell-specific transcript expression by fluorescent in situ hybridization; facilitate immunohistochemical mapping of a protein of interest in whole-mount small tissue/organ samples; examine the subcellular localization of proteins, such as membrane transporters, through sectioning of paraffin-embedded tissue/organ samples; and finally, enable the efficient separation of cytosolic and membrane proteins for western blot analysis without the need for specialized equipment (e.g., ultracentrifuge) in the mosquito <i>Ae. aegypti</i> Such techniques are useful to help answer fundamental questions in mosquito scientific research including (but not limited to) the identification of specific cells in an organ responsible for expressing a receptor of particular interest and necessary for eliciting a response to exogenous signals, including hormones. Moreover, changes in the subcellular localization of specific targets of interest can be assessed both qualitatively and quantitatively, providing insight into transient or long-term physiologically relevant regulation necessary for activity under experimental treatments or varied internal (e.g., development) or external (e.g., environmental stress) factors that might be normally experienced by the organism.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top107698"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farwa Sajadi, Britney Picinic, Salwa Afifi, Jean-Paul V Paluzzi
{"title":"Examining Apical or Basolateral Protein Localization in <i>Aedes aegypti</i> Tissues: Cross-Section Immunohistochemistry.","authors":"Farwa Sajadi, Britney Picinic, Salwa Afifi, Jean-Paul V Paluzzi","doi":"10.1101/pdb.prot108282","DOIUrl":"10.1101/pdb.prot108282","url":null,"abstract":"<p><p>Immunohistochemistry (IHC) is an important technique that permits visualization of cellular components and for determining the presence and/or distribution of proteins or other macromolecules in tissue samples. Normally, IHC involves the detection of epitopes using an antigen-specific primary antibody and a secondary antibody coupled with a reporter molecule or fluorophore that can bind to the primary antibody, allowing for the spatial distribution of a protein of interest to be detected. Although normally IHC does not provide quantitative results compared to techniques such as enzyme-linked immunoassay or western blotting, it permits the localization, expression mapping, and distribution of target proteins in intact tissues. Here, we describe an IHC protocol for examining apical versus basolateral protein staining through sectioning tissue samples from fixed, embedded tissues (e.g., IHC-paraffin) and adding primary antibodies against a target protein. This IHC protocol provides a guide for tissue fixation, sectioning, and staining of tissue samples.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108282"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minami Kimura, Jason Y Tann, Oliver R Wilkes, Fangke Xu, Henrik Skibbe, Adrian W Moore
{"title":"Use of DeTerm for Automated <i>Drosophila</i> Dendrite Arbor Terminal Counts.","authors":"Minami Kimura, Jason Y Tann, Oliver R Wilkes, Fangke Xu, Henrik Skibbe, Adrian W Moore","doi":"10.1101/pdb.prot108151","DOIUrl":"10.1101/pdb.prot108151","url":null,"abstract":"<p><p>Neurons have a complex dendritic architecture that governs information flow through a circuit. Manual quantification of dendritic arbor morphometrics is time-consuming and can be inaccurate. Automated quantification systems such as DeTerm help to overcome these limitations. DeTerm is a software tool that automatically recognizes dendrite branch terminals with high precision. It uses an artificial neural network to label the terminals, count them, and provide each terminal's positional data. DeTerm can recognize the dendritic terminals of <i>Drosophila</i> dendritic arborization (da) neurons, and it can also examine other types of neurons, including mouse Purkinje cells. It is freely available and works on Mac, Windows, and Linux. Here, we describe the use of DeTerm.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108151"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Examining Protein Localization in <i>Aedes aegypti</i> Cells, Tissues, and Organs: Whole-Mount Immunohistochemistry.","authors":"Salwa Afifi, Farwa Sajadi, Jean-Paul V Paluzzi","doi":"10.1101/pdb.prot108281","DOIUrl":"10.1101/pdb.prot108281","url":null,"abstract":"<p><p>Immunohistochemistry (IHC) is a powerful technique used for visualizing cellular components and determining the presence and/or location of proteins or other macromolecules in tissue samples. The classical IHC process involves the detection of epitopes using a highly specific primary antibody. This is followed by a secondary antibody that is coupled to a reporter molecule or fluorophore and capable of binding to the primary antibody and allowing for protein immunodetection. Although IHC does not routinely provide quantitative results compared to an enzyme-linked immunoassay or western blotting, it permits the localization of the proteins in intact tissues. This protocol describes an IHC assay for whole-body <i>Aedes aegypti</i> mosquito tissues that is used to detect small proteins, specifically neuropeptide hormones. This method is useful for protein detection in whole-mount preparations; however, cross-section IHC is recommended to determine if a protein is localized in the apical versus basolateral membrane of tissues/organs or to visualize immunological distribution in larger, more complex preparations.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108281"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jason Y Tann, Fangke Xu, Minami Kimura, Oliver R Wilkes, Li-Foong Yoong, Henrik Skibbe, Adrian W Moore
{"title":"Study of Dendrite Differentiation Using <i>Drosophila</i> Dendritic Arborization Neurons.","authors":"Jason Y Tann, Fangke Xu, Minami Kimura, Oliver R Wilkes, Li-Foong Yoong, Henrik Skibbe, Adrian W Moore","doi":"10.1101/pdb.top108146","DOIUrl":"10.1101/pdb.top108146","url":null,"abstract":"<p><p>Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the <i>Drosophila</i> peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top108146"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangke Xu, Jason Y Tann, Oliver R Wilkes, Minami Kimura, Li-Foong Yoong, Adrian W Moore
{"title":"Mounting of Embryos, Larvae, and Pupae for Live <i>Drosophila</i> Dendritic Arborization Neuron Imaging.","authors":"Fangke Xu, Jason Y Tann, Oliver R Wilkes, Minami Kimura, Li-Foong Yoong, Adrian W Moore","doi":"10.1101/pdb.prot108149","DOIUrl":"10.1101/pdb.prot108149","url":null,"abstract":"<p><p>Live imaging approaches are essential for monitoring how neurons go through a coordinated series of differentiation steps in their native mechanical and chemical environment. These imaging approaches also allow the study of dynamic subcellular processes such as cytoskeleton remodeling and the movement of organelles. <i>Drosophila</i> dendritic arborization (da) neurons are a powerful experimental system for studying the dendrite arbor in live animals. da neurons are located on the internal surface of the body wall and, therefore, are easily accessible for imaging. Moreover, many genetic tools target da neurons to disrupt genes or proteins of interest and allow the investigator to visualize fluorescent markers and endogenously tagged proteins in the neurons. This protocol introduces methods for preparing and mounting intact <i>Drosophila</i> embryos, larvae, and pupae, allowing live imaging of dynamic cellular processes in da neurons.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108149"},"PeriodicalIF":0.0,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}