{"title":"利用稳定同位素量化玉米根系的氮吸收率","authors":"Findimila Dio Ishaya, Amanda Rasmussen","doi":"10.1101/pdb.top108436","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen is an essential element for plant growth and development; however, application of nitrogen (N)-based fertilizers comes with a high environmental cost. This includes the energy required for production, volatilization from fields, and runoff or leaching to waterways triggering algal blooms. As such, a key goal in plant breeding programs is to develop varieties that maintain yield while requiring less fertilization. Central to this goal is understanding how roots take up nitrogen and finding traits that represent improvements in the net uptake. Maize, one of the most widely produced crops in the world, has seminal, crown, and brace root types, each under independent developmental control. Recent evidence suggests that these independent developmental patterns may result in different nutrient uptake characteristics. As such, understanding the uptake dynamics of each root type under different environmental conditions is an essential aspect for the selection of new maize varieties. A key method for tracking nitrogen uptake is the use of the <sup>15</sup>N stable isotope, which is naturally less abundant than the main <sup>14</sup>N isotope. This method involves replacing the <sup>14</sup>N in nutrient solutions with <sup>15</sup>N, exogenously providing it to the plant tissues (roots in this case), and then measuring the <sup>15</sup>N content of the tissues after a fixed amount of time. Here, we provide a brief overview of nitrogen uptake and remobilization in maize, and discuss current techniques for measuring nutrient uptake, with a focus on methods using stable isotopes of nitrogen.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.top108436"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Nitrogen Uptake Rates of Maize Roots Using Stable Isotopes.\",\"authors\":\"Findimila Dio Ishaya, Amanda Rasmussen\",\"doi\":\"10.1101/pdb.top108436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen is an essential element for plant growth and development; however, application of nitrogen (N)-based fertilizers comes with a high environmental cost. This includes the energy required for production, volatilization from fields, and runoff or leaching to waterways triggering algal blooms. As such, a key goal in plant breeding programs is to develop varieties that maintain yield while requiring less fertilization. Central to this goal is understanding how roots take up nitrogen and finding traits that represent improvements in the net uptake. Maize, one of the most widely produced crops in the world, has seminal, crown, and brace root types, each under independent developmental control. Recent evidence suggests that these independent developmental patterns may result in different nutrient uptake characteristics. As such, understanding the uptake dynamics of each root type under different environmental conditions is an essential aspect for the selection of new maize varieties. A key method for tracking nitrogen uptake is the use of the <sup>15</sup>N stable isotope, which is naturally less abundant than the main <sup>14</sup>N isotope. This method involves replacing the <sup>14</sup>N in nutrient solutions with <sup>15</sup>N, exogenously providing it to the plant tissues (roots in this case), and then measuring the <sup>15</sup>N content of the tissues after a fixed amount of time. Here, we provide a brief overview of nitrogen uptake and remobilization in maize, and discuss current techniques for measuring nutrient uptake, with a focus on methods using stable isotopes of nitrogen.</p>\",\"PeriodicalId\":10496,\"journal\":{\"name\":\"Cold Spring Harbor protocols\",\"volume\":\" \",\"pages\":\"pdb.top108436\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/pdb.top108436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying Nitrogen Uptake Rates of Maize Roots Using Stable Isotopes.
Nitrogen is an essential element for plant growth and development; however, application of nitrogen (N)-based fertilizers comes with a high environmental cost. This includes the energy required for production, volatilization from fields, and runoff or leaching to waterways triggering algal blooms. As such, a key goal in plant breeding programs is to develop varieties that maintain yield while requiring less fertilization. Central to this goal is understanding how roots take up nitrogen and finding traits that represent improvements in the net uptake. Maize, one of the most widely produced crops in the world, has seminal, crown, and brace root types, each under independent developmental control. Recent evidence suggests that these independent developmental patterns may result in different nutrient uptake characteristics. As such, understanding the uptake dynamics of each root type under different environmental conditions is an essential aspect for the selection of new maize varieties. A key method for tracking nitrogen uptake is the use of the 15N stable isotope, which is naturally less abundant than the main 14N isotope. This method involves replacing the 14N in nutrient solutions with 15N, exogenously providing it to the plant tissues (roots in this case), and then measuring the 15N content of the tissues after a fixed amount of time. Here, we provide a brief overview of nitrogen uptake and remobilization in maize, and discuss current techniques for measuring nutrient uptake, with a focus on methods using stable isotopes of nitrogen.
Cold Spring Harbor protocolsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍:
Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.