Cold Spring Harbor protocols最新文献

筛选
英文 中文
Generation of a Phage Display Chicken Single-Chain Variable Fragment Library. 噬菌体展示鸡单链可变片段库的生成。
Cold Spring Harbor protocols Pub Date : 2024-08-16 DOI: 10.1101/pdb.prot108213
Hyunji Yang, Jisu Chae, Hyori Kim, Jinsung Noh, Junho Chung
{"title":"Generation of a Phage Display Chicken Single-Chain Variable Fragment Library.","authors":"Hyunji Yang, Jisu Chae, Hyori Kim, Jinsung Noh, Junho Chung","doi":"10.1101/pdb.prot108213","DOIUrl":"https://doi.org/10.1101/pdb.prot108213","url":null,"abstract":"<p><p>Phage-displayed antibody fragment libraries can be constructed using essentially any species that is easily immunized, as long as the immunoglobulin variable region gene sequences are known. This protocol describes the procedures for the generation of a phage-displayed chicken single-chain variable fragment (scFv) library after immunization with a target antigen. Briefly, the rearranged heavy chain variable region (<i>V</i> <sub><i>H</i></sub> ) genes and the <i>λ</i> light chain variable region (<i>V</i> <sub><i>λ</i></sub> ) genes are amplified separately and are linked through two separate PCR steps to give the final scFv genes. The genes are then cloned into pComb3XSS to generate the phage display chicken scFv library, which can then be used for test and final library ligations.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compositional Analysis of Cutin in Maize Leaves. 玉米叶中 Cutin 的成分分析
Cold Spring Harbor protocols Pub Date : 2024-08-12 DOI: 10.1101/pdb.prot108434
Richard Bourgault, Isabel Molina
{"title":"Compositional Analysis of Cutin in Maize Leaves.","authors":"Richard Bourgault, Isabel Molina","doi":"10.1101/pdb.prot108434","DOIUrl":"https://doi.org/10.1101/pdb.prot108434","url":null,"abstract":"<p><p>The cuticle is a lipid barrier that covers the air-exposed surfaces of plants. It consists of waxes and cutin, a cell wall-attached lipid polyester of oxygenated fatty acids and glycerol. Unlike waxes, cutin is insoluble in organic solvents, and its composition is typically studied by chemical depolymerization followed by monomer analysis by gas chromatography (GC). Here, we describe a method for the chemical depolymerization of cutin in maize leaves and subsequent compositional analysis of the constituent lipid monomers. The method has been adapted from protocols for cutin analysis developed for <i>Arabidopsis</i>, by both optimizing the amount of leaf tissue used and including a data analysis process specific to the monomers present in maize cutin. The approach uses base-catalyzed transmethylation, which produces fatty acid methyl esters, and silylation, which gives trimethylsilyl ether derivatives of hydroxyl groups for gas chromatographic analysis. For monomer identification, a few representative samples are first analyzed by GC-mass spectrometry (GC-MS). This is then followed by analysis of all replicates by gas chromatography coupled to a flame ionization detector (GC-FID) for monomer quantification, because the flame ionization detector provides a linear response over a wide mass range, is relatively simple to operate, and is more cost-effective to maintain compared to mass spectrometry detectors. Although the protocol bypasses time-consuming cuticle isolation steps by using whole-leaf samples, this means that a fraction of the compounds in the chromatographic profiles do not derive from cutin. Accordingly, we discuss some considerations for the interpretation of the resulting depolymerization products. Our protocol offers specific guidance on preparing maize leaf samples, ensuring reproducible results, and enabling the detection of subtle variations in cutin monomer composition among plant genotypes or developmental stages.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assaying Nociception Behaviors in Drosophila Larvae During Parasitoid Wasp Attacks. 测定寄生蜂攻击果蝇幼虫时的痛觉行为
Cold Spring Harbor protocols Pub Date : 2024-08-02 DOI: 10.1101/pdb.prot108129
Stephanie E Mauthner, Lydia J Borjon, W Daniel Tracey
{"title":"Assaying Nociception Behaviors in <i>Drosophila</i> Larvae During Parasitoid Wasp Attacks.","authors":"Stephanie E Mauthner, Lydia J Borjon, W Daniel Tracey","doi":"10.1101/pdb.prot108129","DOIUrl":"10.1101/pdb.prot108129","url":null,"abstract":"<p><p>Nociception in fruit fly (<i>Drosophila melanogaster</i>) larvae is characterized by a stereotyped escape behavior. When a larva encounters a noxious (potentially harmful) stimulus, it responds by curving its body into a c-shape and rolling in a corkscrew-like manner around its long-body axis. This rolling behavior may serve to quickly remove the larva from the source of the noxious stimulus, and is particularly adaptive to escape from a common natural predator of fruit fly larvae: parasitoid wasps (<i>Leptopilina boulardi</i>). <i>L. boulardi</i> completes its life cycle by using fruit fly larvae as hosts for its offspring. Female wasps sting fly larvae with an ovipositor and lay an egg within the larva. The wasp offspring hatches inside the fly larva, consumes the fly tissues during pupation, and eventually emerges from the pupal case as an adult wasp. Fruit fly larvae respond to oviposition attacks by rolling, which causes the long flexible ovipositor to be wound around the larval body like a spool. This dislodges the wasp and allows the larva to attempt to escape by crawling. Rolling behavior is triggered by the activation of sensory neurons (nociceptors) whose function can inform our understanding of the mechanisms of nociception. In this protocol, we describe a simple behavioral assay to test and measure nociceptive responses in <i>Drosophila</i> larvae during oviposition attacks by female parasitoid wasps. First, we discuss parasitoid wasp husbandry and culturing methods in the laboratory. We then describe how to perform the wasp nociception assay on third-instar fruit fly larvae.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Nociception Assay in Drosophila Larvae. 果蝇幼虫的机械痛觉试验
Cold Spring Harbor protocols Pub Date : 2024-08-02 DOI: 10.1101/pdb.prot108125
Stephanie E Mauthner, W Daniel Tracey
{"title":"Mechanical Nociception Assay in <i>Drosophila</i> Larvae.","authors":"Stephanie E Mauthner, W Daniel Tracey","doi":"10.1101/pdb.prot108125","DOIUrl":"10.1101/pdb.prot108125","url":null,"abstract":"<p><p>The nervous system of animals can sense and respond to noxious stimuli, which include noxious thermal, chemical, or mechanical stimuli, through a process called nociception. Here, we describe a simple behavioral assay to measure mechanically induced nociceptive responses in <i>Drosophila</i> larvae. This assay tests larval mechanosensitivity to noxious force with calibrated von Frey filaments. First, we explain how to construct and calibrate the customizable von Frey filaments that can be used to deliver reproducible stimuli of a defined force or pressure. Next, we describe how to perform the mechanical nociception assay on third-instar larvae. Through comparison of the responses of genotypes of interest, this assay can be useful for investigation of molecular, cellular, and circuit mechanisms of mechanical nociception. At the molecular level, prior studies have identified the importance of sensory ion channels such as Pickpocket/Balboa, Piezo, dTRPA1, and Painless. At the cellular level, the class IV multidendritic arborizing (md-da) neurons are the main mechanical nociceptor neurons of the peripheral system, but class III and class II md-da have been found to also play a role. At the circuit level, studies have shown that mechanical nociception relies on interneurons of the abdominal ganglia that integrate inputs from these various md-da neuron classes.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optogenetic Stimulation of Nociceptive Escape Behaviors in Drosophila Larvae. 光遗传刺激果蝇幼虫的痛觉逃逸行为
Cold Spring Harbor protocols Pub Date : 2024-08-02 DOI: 10.1101/pdb.prot108128
Stephanie E Mauthner, W Daniel Tracey
{"title":"Optogenetic Stimulation of Nociceptive Escape Behaviors in <i>Drosophila</i> Larvae.","authors":"Stephanie E Mauthner, W Daniel Tracey","doi":"10.1101/pdb.prot108128","DOIUrl":"10.1101/pdb.prot108128","url":null,"abstract":"<p><p>In animals, noxious stimuli activate a neural process called nociception. <i>Drosophila</i> larvae perform a rolling escape locomotion behavior in response to nociceptive sensory stimuli. Noxious mechanical, thermal, and chemical stimuli each trigger this same escape response in larvae. The polymodal sensory neurons that initiate the rolling response have been identified based on the expression patterns of genes that are known to be required for nociception responses. The synaptic output of these neurons, known as class IV multidendritic sensory neurons, is required for behavioral responses to thermal, mechanical, and chemical triggers of the rolling escape locomotion. Importantly, optogenetic stimulation of the class IV multidendritic neurons has also shown that the activation of those cells is sufficient to trigger nociceptive rolling. Optogenetics uses light-activated ion channels expressed in neurons of interest to bypass the normal physiological transduction machinery so that the cell may be activated in response to light that is applied by the investigator. This protocol describes an optogenetic technique that uses channelrhodopsin-2 (ChR2) to activate larval nociceptors and trigger nociceptive rolling. First, we explain how to set up the necessary genetic crosses and culture the larval progeny. Next, we describe how to perform the optogenetic nociception assay on third-instar larvae.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nociception in Drosophila Larvae. 果蝇幼虫的痛觉感应
Cold Spring Harbor protocols Pub Date : 2024-08-02 DOI: 10.1101/pdb.top108172
Lydia J Borjon, Stephanie E Mauthner, W Daniel Tracey
{"title":"Nociception in <i>Drosophila</i> Larvae.","authors":"Lydia J Borjon, Stephanie E Mauthner, W Daniel Tracey","doi":"10.1101/pdb.top108172","DOIUrl":"10.1101/pdb.top108172","url":null,"abstract":"<p><p>Nociception is the sensory modality by which animals sense stimuli associated with injury or potential tissue damage. When <i>Drosophila</i> larvae encounter a noxious thermal, chemical, or mechanical stimulus, they perform a stereotyped rolling behavior. These noxious stimuli are detected by polymodal nociceptor neurons that tile the larval epidermis. Although several types of sensory neurons feed into the nociceptive behavioral output, the highly branched class IV multidendritic arborization neurons are the most critical. At the molecular level, <i>Drosophila</i> nociception shares many conserved features with vertebrate nociception, making it a useful organism for medically relevant research in this area. Here, we review three larval assays for nociceptive behavior using mechanical stimuli, optogenetic activation, and the naturalistic stimuli of parasitoid wasp attacks. Together, the assays described have been successfully used by many laboratories in studies of the molecular, cellular, and circuit mechanisms of nociception. In addition, the simple nature of the assays we describe can be useful in teaching laboratories for undergraduate students.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collecting, Storing, and Hatching Aedes aegypti Eggs. 收集、储存和孵化埃及伊蚊卵。
Cold Spring Harbor protocols Pub Date : 2024-08-01 DOI: 10.1101/pdb.prot108183
Noah H Rose, John J Shepard, Diego Ayala
{"title":"Collecting, Storing, and Hatching <i>Aedes aegypti</i> Eggs.","authors":"Noah H Rose, John J Shepard, Diego Ayala","doi":"10.1101/pdb.prot108183","DOIUrl":"10.1101/pdb.prot108183","url":null,"abstract":"<p><p>Laboratory study of natural populations of mosquitoes can play a key role in determining the underlying causes of variation in burdens of mosquito-borne disease. <i>Aedes aegypti</i> is the main vector of the viruses that cause dengue, chikungunya, Zika, and yellow fever, making it a high priority for laboratory study. <i>Ae. aegypti</i> eggs provide an ideal starting point for new laboratory colonies. Eggs can be collected using ovicups, which are small plastic cups lined with seed-germination paper and partially filled with leaf-infused H<sub>2</sub>O. Once collected, dry eggs will remain viable for months and can be safely transported long distances back to the laboratory as long as they are properly stored. This protocol provides step-by-step instructions for preparing for collecting, storing, and hatching <i>Ae. aegypti</i> eggs and has successfully yielded laboratory colonies from locations across both the native and invasive range of this species.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.prot108183"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10110867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure, Biology, and Applications of Filamentous Bacteriophages. 噬丝状细菌病毒的结构、生物学和应用。
Cold Spring Harbor protocols Pub Date : 2024-08-01 DOI: 10.1101/pdb.over107754
Jasna Rakonjac, Vicki A M Gold, Rayén I León-Quezada, Catherine H Davenport
{"title":"Structure, Biology, and Applications of Filamentous Bacteriophages.","authors":"Jasna Rakonjac, Vicki A M Gold, Rayén I León-Quezada, Catherine H Davenport","doi":"10.1101/pdb.over107754","DOIUrl":"10.1101/pdb.over107754","url":null,"abstract":"<p><p>The closely related <i>Escherichia coli</i> Ff filamentous phages (f1, fd, and M13) have taken a fantastic journey over the past 60 years, from the urban sewerage from which they were first isolated, to their use in high-end technologies in multiple fields. Their relatively small genome size, high titers, and the virions that tolerate fusion proteins make the Ffs an ideal system for phage display. Folding of the fusions in the oxidizing environment of the <i>E. coli</i> periplasm makes the Ff phages a platform that allows display of eukaryotic surface and secreted proteins, including antibodies. Resistance of the Ffs to a broad range of pH and detergents facilitates affinity screening in phage display, whereas the stability of the virions at ambient temperature makes them suitable for applications in material science and nanotechnology. Among filamentous phages, only the Ffs have been used in phage display technology, because of the most advanced state of knowledge about their biology and the various tools developed for <i>E. coli</i> as a cloning host for them. Filamentous phages have been thought to be a rather small group, infecting mostly Gram-negative bacteria. A recent discovery of more than 10 thousand diverse filamentous phages in bacteria and archaea, however, opens a fascinating prospect for novel applications. The main aim of this review is to give detailed biological and structural information to researchers embarking on phage display projects. The secondary aim is to discuss the yet-unresolved puzzles, as well as recent developments in filamentous phage biology, from a viewpoint of their impact on current and future applications.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.over107754"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9830045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind Tunnels and Airflow-Driven Assays: Methods for Establishing the Cues and Orientation Mechanisms That Modulate Female Mosquito Attraction to Human Hosts. 风洞和气流驱动试验:确定调节雌蚊吸引人类宿主的线索和定向机制的方法。
Cold Spring Harbor protocols Pub Date : 2024-08-01 DOI: 10.1101/pdb.over107675
Ring T Cardé
{"title":"Wind Tunnels and Airflow-Driven Assays: Methods for Establishing the Cues and Orientation Mechanisms That Modulate Female Mosquito Attraction to Human Hosts.","authors":"Ring T Cardé","doi":"10.1101/pdb.over107675","DOIUrl":"10.1101/pdb.over107675","url":null,"abstract":"<p><p>Understanding how female mosquitoes find a prospective host is crucial to developing means that can interfere with this process. Many methods are available to researchers studying cues and orientation mechanisms that modulate female mosquito attraction to hosts. Behaviors that can be monitored with these assays include activation, taking flight, upwind flight along an odor plume (optomotor anemotaxis), close approach to the stimulus (including hovering), and landing. Video recording can three-dimensionally document flight tracks and can correlate overall distribution patterns and moment-to-moment movements with odor contact and the presence of nearby cues such as a visual target. Here, we introduce mosquito host-seeking behaviors and methods to study them: wind tunnels (which allow orientation in free-flight), airflow-driven assays (using either tethered mosquitoes or small assay chambers that permit flight but also often dictate walking orientation), and still-air assays (wherein in odor concentration and spatial distribution are the orientation cues). We also describe factors that affect the assays and provide assay design considerations.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.over107675"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139402196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The pComb3 Phagemid Family of Phage Display Vectors. 噬菌体展示载体 pComb3 Phagemid 系列。
Cold Spring Harbor protocols Pub Date : 2024-08-01 DOI: 10.1101/pdb.over107756
Christoph Rader
{"title":"The pComb3 Phagemid Family of Phage Display Vectors.","authors":"Christoph Rader","doi":"10.1101/pdb.over107756","DOIUrl":"10.1101/pdb.over107756","url":null,"abstract":"<p><p>A phagemid is a plasmid that contains the origin of replication and packaging signal of a filamentous phage. Following bacterial transformation, a phagemid can be replicated and amplified as a plasmid, using a double-stranded DNA origin of replication, or it can be replicated as single-stranded DNA for packaging into filamentous phage particles. The use of phagemids enables phage display of large proteins, such as antibody fragments. Phagemid pComb3 was among the first phage display vectors used for the generation and selection of antibody libraries in the 50-kDa Fab format, a monovalent proxy of natural antibodies. Affording a robust and versatile tool for more than three decades, phage display vectors of the pComb3 phagemid family have been widely used for the discovery, affinity maturation, and humanization of antibodies in Fab, scFv, and single-domain formats from naive, immune, and synthetic antibody repertoires. In addition, they have been used for broadening phage display to the mining of nonimmunoglobulin repertoires. This review examines conceptual, functional, and molecular features of the first-generation phage display vector pComb3 and its successors, pComb3H, pComb3X, and pC3C.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":"pdb.over107756"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9830049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信