{"title":"The Mechanics of Building Functional Organs.","authors":"Toby G R Andrews, Rashmi Priya","doi":"10.1101/cshperspect.a041520","DOIUrl":"10.1101/cshperspect.a041520","url":null,"abstract":"<p><p>Organ morphogenesis is multifaceted, multiscale, and fundamentally a robust process. Despite the complex and dynamic nature of embryonic development, organs are built with reproducible size, shape, and function, allowing them to support organismal growth and life. This striking reproducibility of tissue form exists because morphogenesis is not entirely hardwired. Instead, it is an emergent product of mechanochemical information flow, operating across spatial and temporal scales-from local cellular deformations to organ-scale form and function, and back. In this review, we address the mechanical basis of organ morphogenesis, as understood by observations and experiments in living embryos. To this end, we discuss how mechanical information controls the emergence of a highly conserved set of structural motifs that shape organ architectures across the animal kingdom: folds and loops, tubes and lumens, buds, branches, and networks. Moving forward, we advocate for a holistic conceptual framework for the study of organ morphogenesis, which rests on an interdisciplinary toolkit and brings the embryo center stage.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Kucenas, Pernelle Pulh, Piotr Topilko, Cody J Smith
{"title":"Glia at Transition Zones.","authors":"Sarah Kucenas, Pernelle Pulh, Piotr Topilko, Cody J Smith","doi":"10.1101/cshperspect.a041369","DOIUrl":"10.1101/cshperspect.a041369","url":null,"abstract":"<p><p>Neural cells are segregated into their distinct central nervous system (CNS) and peripheral nervous system (PNS) domains. However, at specialized regions of the nervous system known as transition zones (TZs), glial cells from both the CNS and PNS are uniquely present with other specialized TZ cells. Herein we review the current understanding of vertebrate TZ cells. The article discusses the distinct cells at vertebrate TZs with a focus on cells that are located on the peripheral side of the spinal cord TZs. In addition to the developmental origin and differentiation of these TZ cells, the functional importance and the role of TZ cells in disease are highlighted. This article also reviews the common and unique features of vertebrate TZs from zebrafish to mice. We propose challenges and open questions in the field that could lead to exciting insights in the field of glial biology.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carien M Niessen, M Lisa Manning, Sara A Wickström
{"title":"Mechanochemical Principles of Epidermal Tissue Dynamics.","authors":"Carien M Niessen, M Lisa Manning, Sara A Wickström","doi":"10.1101/cshperspect.a041518","DOIUrl":"https://doi.org/10.1101/cshperspect.a041518","url":null,"abstract":"<p><p>How tissue architecture and function emerge during development and what facilitates their resilience and homeostatic dynamics during adulthood is a fundamental question in biology. Biological tissue barriers such as the skin epidermis have evolved strategies that integrate dynamic cellular turnover with high resilience against mechanical and chemical stresses. Interestingly, both dynamic and resilient functions are generated by a defined set of molecular and cell-scale processes, including adhesion and cytoskeletal remodeling, cell shape changes, cell division, and cell movement. These traits are coordinated in space and time with dynamic changes in cell fates and cell mechanics that are generated by contractile and adhesive forces. In this review, we discuss how studies on epidermal morphogenesis and homeostasis have contributed to our understanding of the dynamic interplay between biochemical and mechanical signals during tissue morphogenesis and homeostasis, and how the material properties of tissues dictate how cells respond to these active stresses, thereby linking cell-scale behaviors to tissue- and organismal-scale changes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catherine L Peichel, Daniel I Bolnick, Åke Brännström, Ulf Dieckmann, Rebecca J Safran
{"title":"Speciation.","authors":"Catherine L Peichel, Daniel I Bolnick, Åke Brännström, Ulf Dieckmann, Rebecca J Safran","doi":"10.1101/cshperspect.a041735","DOIUrl":"https://doi.org/10.1101/cshperspect.a041735","url":null,"abstract":"<p><p>What drives the emergence of new species has fascinated biologists since Darwin. Reproductive barriers to gene flow are a key step in the formation of species, and recent advances have shed new light on how these are established. Genetic, genomic, and comparative techniques, together with improved theoretical frameworks, are increasing our understanding of the underlying mechanisms. They are also helping us forecast speciation and reveal the impact of human activity.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental Control of Cell Cycle and Signaling.","authors":"Stefano Di Talia","doi":"10.1101/cshperspect.a041499","DOIUrl":"https://doi.org/10.1101/cshperspect.a041499","url":null,"abstract":"<p><p>In most species, the earliest stages of embryogenesis are characterized by rapid proliferation, which must be tightly controlled with other cellular processes across the large scale of the embryo. The study of this coordination has recently revealed new mechanisms of regulation of morphogenesis. Here, I discuss progress on how the integration of biochemical and mechanical signals leads to the proper positioning of cellular components, how signaling waves ensure the synchronization of the cell cycle, and how cell cycle transitions are properly timed. Similar concepts are emerging in the control of morphogenesis of other tissues, highlighting both common and unique features of early embryogenesis.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas W Gould, Chien-Ping Ko, Hugh Willison, Richard Robitaille
{"title":"Perisynaptic Schwann Cells: Guardians of Neuromuscular Junction Integrity and Function in Health and Disease.","authors":"Thomas W Gould, Chien-Ping Ko, Hugh Willison, Richard Robitaille","doi":"10.1101/cshperspect.a041362","DOIUrl":"https://doi.org/10.1101/cshperspect.a041362","url":null,"abstract":"<p><p>The neuromuscular junction (NMJ) is a highly reliable synapse to carry the control of the motor commands of the nervous system over the muscles. Its development, organization, and synaptic properties are highly structured and regulated to support such reliability and efficacy. Yet, the NMJ is also highly plastic, able to react to injury, and able to adapt to changes. This balance between structural stability and synaptic efficacy on one hand and structural plasticity and repair on another hand is made possible by perisynaptic Schwann cells (PSCs), glial cells at this synapse. They regulate synaptic efficacy and structural plasticity of the NMJ in a dynamic, bidirectional manner owing to their ability to decode synaptic transmission and by their interactions with trophic-related factors. Alteration of these fundamental roles of PSCs is also important in the maladapted response of NMJs in various diseases and in aging.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A History of Cancer Research: Oncogenic Transcription Factors.","authors":"Joseph Lipsick","doi":"10.1101/cshperspect.a035881","DOIUrl":"10.1101/cshperspect.a035881","url":null,"abstract":"<p><p>Transcription factors play crucial roles in cancer, and oncogenic counterparts of cellular transcription factors are present in a number of tumor viruses. It was studies in the early 1980s that first showed tumor viruses could encode nuclear as well as cytoplasmic oncoproteins. Subsequent work provided detailed insight into their mechanisms of action, as well as potential therapeutic avenues. In this excerpt from his forthcoming book on the history of cancer research, Joe Lipsick looks back at early work on nuclear oncogenes, including the discovery of MYC, MYB, FOS and JUN, Rel/NF-κB, and nuclear receptors such as the retinoic acid receptor and thyroid hormone receptor.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146308/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marius Roesti, Hannes Roesti, Ina Satokangas, Janette Boughman, Samridhi Chaturvedi, Jochen B W Wolf, R Brian Langerhans
{"title":"Predictability, an Orrery, and a Speciation Machine: Quest for a Standard Model of Speciation.","authors":"Marius Roesti, Hannes Roesti, Ina Satokangas, Janette Boughman, Samridhi Chaturvedi, Jochen B W Wolf, R Brian Langerhans","doi":"10.1101/cshperspect.a041456","DOIUrl":"10.1101/cshperspect.a041456","url":null,"abstract":"<p><p>Accurate predictions are commonly taken as a hallmark of strong scientific understanding. Yet, we do not seem capable today of making many accurate predictions about biological speciation. Why? What limits predictability in general, what exactly is the function and value of predictions, and how might we go about predicting new species? Inspired by an orrery used to explain solar eclipses, we address these questions with a thought experiment in which we conceive an evolutionary speciation machine generating new species. This experiment highlights complexity, chance, and speciation pluralism as the three fundamental challenges for predicting speciation. It also illustrates the methodological value of predictions in testing and improving conceptual models. We then outline how we might move from the hypothetical speciation machine to a predictive standard model of speciation. Operationalizing, testing, and refining this model will require a concerted shift to large-scale, integrative, and interdisciplinary efforts across the tree of life. This endeavor, paired with technological advances, may reveal apparently stochastic processes to be deterministic, and promises to expand the breadth and depth of our understanding of speciation and more generally, of evolution.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruth M Stassart, Jose A Gomez-Sanchez, Alison C Lloyd
{"title":"Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies.","authors":"Ruth M Stassart, Jose A Gomez-Sanchez, Alison C Lloyd","doi":"10.1101/cshperspect.a041363","DOIUrl":"10.1101/cshperspect.a041363","url":null,"abstract":"<p><p>Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":6.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change.","authors":"Julie Gray, Jessica Dunn","doi":"10.1101/cshperspect.a041672","DOIUrl":"10.1101/cshperspect.a041672","url":null,"abstract":"<p><p>Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These \"water-saver\" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO<sub>2</sub>/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71478933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}