Akmaral B. Rakhym, Zarina Ye. Baranchiyeva, Aruzhan K. Kenessova, Bagashar B. Zhaksybai, Diana N. Dauzhanova, Yitzhak Mastai, Gulziya A. Seilkhanova
{"title":"Recyclable Adsorbents for Potash Brine Desalination Based on Silicate Powder: Application, Regeneration and Utilization","authors":"Akmaral B. Rakhym, Zarina Ye. Baranchiyeva, Aruzhan K. Kenessova, Bagashar B. Zhaksybai, Diana N. Dauzhanova, Yitzhak Mastai, Gulziya A. Seilkhanova","doi":"10.3390/colloids7040061","DOIUrl":"https://doi.org/10.3390/colloids7040061","url":null,"abstract":"Silicate mineral powders (SMP) from weathered granite soil from Kazakhstan are proposed for the desalination of potash brines containing sodium, potassium and chloride ions. Batch adsorption experiments using acid-treated silicate (AS) achieved a Na+/K+/Cl− recovery of ~13/28/6 mg/g. An isothermal study best fitted the Freundlich and Dubinin–Radushkevich models for Na+ and K+/Cl−. The kinetic data were best modeled by pseudo-second-order kinetics for Na+/K+ and pseudo-first-order for Cl−. Thermodynamic calculations showed spontaneity under natural conditions. For Na+/K+, physisorption is accompanied by ion exchange. To study the possibility of sorbent reuse, several cycles of K+/Na+ adsorption–desorption were carried out under optimal conditions. AS selectively adsorbed potassium ions, maintaining a high effectiveness during five cycles providing K-form silicate fertilizers. Leachates of spent AS contain high concentrations of K/Na/Ca/Mg and other microelements essential for plants. Thus, SMP resolve two issues: the desalination of brine and the provision of fertilizer.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136210722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Y. Gyurova, Dimitrinka Arabadzhieva, Ivan Minkov, Ljubomir Nikolov, Elena Mileva
{"title":"Impact of Temperature Variations on the Entrapment of Bacterial Endotoxins in Aqueous Solutions of Four-Antennary Oligoglycines","authors":"Anna Y. Gyurova, Dimitrinka Arabadzhieva, Ivan Minkov, Ljubomir Nikolov, Elena Mileva","doi":"10.3390/colloids7040062","DOIUrl":"https://doi.org/10.3390/colloids7040062","url":null,"abstract":"Specific self-assembly is registered in aqueous solution formulations based on four-antennary oligoglycines (T4), namely a spontaneous onset of highly ordered nanostructures—tectomers. This phenomenon is initiated by the action of hydrogen-bonding interactions that promote molecular recognition propensities involving Polyglycine-II-type non-canonical architecture. The result is the formation of positively charged supramolecular entities. These have high potential to capture bacterial endotoxins, like lipopolysaccharides (LPSs). By now, it has been established that the overall properties of these systems can be precisely regulated and gradually changed through fine-tuning the parameters in the aqueous environment (composition, pH, etc.). One unexplored option is to clarify the impact of temperature variations. The aim of the present study is to implement systematic investigations on how changes in temperature influence the various options for the removal of trace LPS quantities, captured by the T4 tectomers. The additional goal is to verify the possibility to develop consecutive paths of recovering the extra T4 quantities that have not participated in the formation of T4+LPS complexes. Some prospects for further applications, e.g., in medicine and pharmaceutics, are also generally outlined.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136213039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Betül Yesiltas, Pedro J. García-Moreno, Ann-Dorit M. Sørensen, Chiranjib Banerjee, Sampson Anankanbil, Zheng Guo, Peter R. Ogilby, Charlotte Jacobsen
{"title":"The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions","authors":"Betül Yesiltas, Pedro J. García-Moreno, Ann-Dorit M. Sørensen, Chiranjib Banerjee, Sampson Anankanbil, Zheng Guo, Peter R. Ogilby, Charlotte Jacobsen","doi":"10.3390/colloids7030060","DOIUrl":"https://doi.org/10.3390/colloids7030060","url":null,"abstract":"This study investigated the effect of the combined use of sodium caseinate (CAS), commercial phosphatidylcholine (PC), and modified PCs on the physical and oxidative stability of 70% fish oil-in-water emulsions. Caffeic acid was covalently attached to both modified PCs (PCs originated from soy and eggs) in order to increase the antioxidant activity of PCs and investigate the advantage of bringing the antioxidant activity to the close proximity of the oil-water interface. Results showed that oxidative stability was improved when part of the PC was substituted with modified soy PC or egg PC. Emulsions containing a low concentration of modified PCs (10 wt.% of total PC) resulted in a prooxidative effect on the formation of hydroperoxides compared to emulsions with free caffeic acid. On the other hand, a decrease in the formation of volatile oxidation products was observed for emulsions containing higher levels of modified PCs (60 wt.% of total PC) compared to the emulsions with free caffeic acid added at its equivalent concentration. Increased concentrations of modified PCs provided better oxidative stability in high-fat emulsions, independent of the modified PC type. Moreover, when oxidation was initiated by producing singlet oxygen near a single oil droplet using a focused laser, fluorescence imaging showed that the oxidation did not propagate from one oil droplet to another oil droplet.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135203621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Akentiev, Shi-Yow Lin, Giuseppe Loglio, Reinhard Miller, Boris Noskov
{"title":"Surface Properties of Aqueous Dispersions of Bovine Serum Albumin Fibrils","authors":"Alexander Akentiev, Shi-Yow Lin, Giuseppe Loglio, Reinhard Miller, Boris Noskov","doi":"10.3390/colloids7030059","DOIUrl":"https://doi.org/10.3390/colloids7030059","url":null,"abstract":"The surface properties of aqueous dispersions of worm-like fibril aggregates of bovine serum albumin (BSA) differ from those of the adsorption layers of the native protein. The dispersions of BSA fibrils are characterized by slower changes of the surface tension and dynamic surface elasticity and also have different steady-state values of the surface properties. The fourfold compression of the adsorption layer of BSA fibrils leads to noticeably higher surface pressures than those of a compressed layer of the native protein, indicating the formation of a more rigid layer structure in the former case. The spreading of BSA fibrils onto a liquid surface from a concentrated dispersion reduces the effect of surface-active admixtures on the layer properties. The dependencies of the dynamic surface elasticity on surface pressure almost coincide for the spread layers of fibrils and the native protein in the range of low surface pressures, but only the spreading of the native protein can lead to surface pressures higher than 4 mN/m. This distinction is presumably caused by the formation of stable clusters of BSA fibrils at the interface and their slow propagation along the liquid surface.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the ac Measurements of the Electrical Conductivity of Dilute Colloidal Electrolytes","authors":"Ioulia Chikina, Sawako Nakamae, Andrey Varlamov","doi":"10.3390/colloids7030058","DOIUrl":"https://doi.org/10.3390/colloids7030058","url":null,"abstract":"The details of ac-conductivity measurements in a colloidal electrolyte cell with flat control gate electrodes are discussed. The use of impedance diagnostics in studies of transport phenomena in such systems requires caution in the definition of the thickness of the screening accumulation layers that appear along the metal-electrolyte interfaces. The value of this characteristic length λ0 critically depends on the volume fraction ϕ⊙ of colloidal particles in the bulk of the electrolyte. Accounting for the dependence λ0(ϕ⊙) makes it possible to consistently explain the large discrepancy in the available experimental data regarding the influence of the colloidal fraction on the effective conductivity of the colloidal suspension.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135886395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fariza Amankeldi, M. Issakhov, Peyman Pourafshary, Z. Ospanova, M. Gabdullin, Reinhard Miller
{"title":"Foam Stabilization by Surfactant/SiO2 Composite Nanofluids","authors":"Fariza Amankeldi, M. Issakhov, Peyman Pourafshary, Z. Ospanova, M. Gabdullin, Reinhard Miller","doi":"10.3390/colloids7030057","DOIUrl":"https://doi.org/10.3390/colloids7030057","url":null,"abstract":"This paper deals with the potential of aggregates of surfactant and SiO2 nanoparticles as foam stabilizers for practical applications. The effects of different chain lengths and concentrations of the cationic surfactant CnTAB on the performance of CnTAB–SiO2 nanofluids are examined to gain a comprehensive understanding of their ability to stabilize foam. The results indicate enhanced foam stability in the presence of SiO2 nanoparticles. These findings help to better understand foam stabilization and its potential in various industrial applications such as enhanced oil recovery and foam-based separation processes.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45133354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Salim, A. MacGibbon, C. Nowell, Andrew J. Clulow, B. Boyd
{"title":"Influence of Casein and Milk Phospholipid Emulsifiers on the Digestion and Self-Assembled Structures of Milk Lipids","authors":"M. Salim, A. MacGibbon, C. Nowell, Andrew J. Clulow, B. Boyd","doi":"10.3390/colloids7030056","DOIUrl":"https://doi.org/10.3390/colloids7030056","url":null,"abstract":"Interfacial compositions of fat globules modulate the digestion behaviour of milk triglycerides in the gastrointestinal tract, thereby affecting lipid metabolism and delivery of nutrients. In this study, we aim to understand the impact of emulsifiers on lipid digestibility and the self-assembled liquid crystal structures formed by anhydrous milk fat (AMF) during digestion. AMF was emulsified with casein and milk phospholipids, and digestion was performed in both gastric and small intestinal conditions to account for changes at the oil/water interface following enzymatic digestion in the gastric phase. Small angle X-ray scattering was used to characterise the self-assembled structures of the digestion products, while coherent anti-Stokes Raman scattering microscopy was utilised to probe changes in lipid distribution at the single droplet level during digestion. Our findings confirmed that emulsifiers play a key role in the digestion of AMF. Milk phospholipids exhibited a protective effect on milk triglycerides against pancreatic lipase digestion by slowing digestion, but this effect was slightly negated in emulsions pre-digested under gastric conditions. The overall types of liquid crystal structures formed after digestion of casein- and milk phospholipids-emulsified AMF were comparable to commercial bovine milk irrespective of gastric pre-treatment. However, emulsification of AMF with milk phospholipids resulted in changes in the microstructures of the liquid crystal phases, suggesting potential interactions between the digested products of the fat globules and milk phospholipids. This study highlights the importance of emulsifiers in regulating lipid digestion behaviour and lipid self-assembly during digestion.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43099683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Liquid Adsorption Layers Formed from Aqueous Polymer–Surfactant Solutions—Significant Contributions by Boris A. Noskov","authors":"O. Milyaeva, A. Bykov, Reinhard Miller","doi":"10.3390/colloids7030055","DOIUrl":"https://doi.org/10.3390/colloids7030055","url":null,"abstract":"In many modern technologies, surface-active compounds, such as surfactants, polymers, proteins, particles and their mixtures, are essential components. They change the dynamic and equilibrium properties of the inherent interfaces, which is mostly visible in foams and emulsions. The interfacial dilational visco-elasticity is probably the most informative quantity due to its direct interrelation to the equation of state of the corresponding interfacial layers as well as the mechanisms governing the interfacial molecular dynamics. The scientific field of interfacial visco-elasticity, although quite young, has been inspired by the pioneering work of Marangoni, Levich, Lucassen, Lucassen-Reynders, Hansen, van den Tempel and Krotov, and during the last decades, also significantly by Boris Noskov. His contributions to the theoretical foundation and experimental analysis of polymer and mixed surfactant–polymer interfacial layers in particular are essential.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44687742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elham Ommat Mohammadi, S. Yeganehzad, M. A. Hesarinejad, M. Dabestani, E. Schneck, Reinhard Miller
{"title":"Effects of Various Types of Vacuum Cold Plasma Treatment on the Chemical and Functional Properties of Whey Protein Isolate with a Focus on Interfacial Properties","authors":"Elham Ommat Mohammadi, S. Yeganehzad, M. A. Hesarinejad, M. Dabestani, E. Schneck, Reinhard Miller","doi":"10.3390/colloids7030054","DOIUrl":"https://doi.org/10.3390/colloids7030054","url":null,"abstract":"Vacuum cold plasma (VCP), a novel non-thermal processing technology used to modify the physicochemical properties and functionalities of food materials, was applied to whey protein isolate (WPI). The treatment affects the protein chemistry and, as a result, leads to differences in the behavior in solution and at interfaces. To minimize the undesirable effects of high oxidation and to increase the effectiveness of reactive species, the VCP treatment was applied at low pressure using different types of gases (air, combination of argon and air, and sulfur hexafluoride (SF6)). The treatment led to a decrease in the sulfur content and an increase in the carbonyl content, evidenced by oxidation reactions and enhanced disulfide bond formation, as well as cross-linking of protein molecules. Fluorescence-based indicators suggest that the hydrophobicity of the proteins as well as their aggregation increase after VCP treatment with an argon–air gas mixture; however, it decreases after VCP treatments with air and SF6. The chemical modifications further lead to changes in the pH of aqueous WPI solutions, as well as the average size and ζ-potential of WPI aggregates. Moreover, the dynamic surface tension, surface dilational elasticity, and the thickness of the WPI adsorption layers at the air/water interface depend on the VCP type. SF6 plasma treatment leads to a significant decrease in pH and an increase in the ζ-potential, and consequently to a significant increase in the aggregate size. The dynamic surface tension as well as the adsorption rates increase after SF6VCP treatment, but decrease after air–VCP and argon–air–VCP treatments. The adsorbed WPI aggregates form strong viscoelastic interfacial layers, the thickness of which depends on the type of VCP treatment.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45292801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Drop Size Distribution Model for Dropwise Condensation on a Superhydrophobic Surface","authors":"G. Denoga, J. Balbarona, Hernando S. Salapare","doi":"10.3390/colloids7030053","DOIUrl":"https://doi.org/10.3390/colloids7030053","url":null,"abstract":"This study presents a mathematical model of drop size distribution during dropwise condensation on a superhydrophobic surface. The model is developed by combining a power law growth model, an exponentially decaying population model, and a Gaussian probability model for growth variations. The model is validated against experiment data, with correlations ranging from 88% to 94%. The growth model is shown to sufficiently describe the growth of drops from 0.02 mm to 0.1 mm but may be extrapolated to describe the growth of even smaller drops. The experiment data show that drop size distribution or frequency distribution of drops of different sizes varies significantly with time and may be considered pseudo-cyclic. The developed model, together with the sweep rate of drops, sufficiently describes this behavior and, consequently, may also be used to better estimate the heat transfer rate due to dropwise condensation.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44565212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}