R. Campbell, T. Kairaliyeva, S. Santer, E. Schneck, Reinhard Miller
{"title":"Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry","authors":"R. Campbell, T. Kairaliyeva, S. Santer, E. Schneck, Reinhard Miller","doi":"10.3390/colloids6040068","DOIUrl":"https://doi.org/10.3390/colloids6040068","url":null,"abstract":"We have directly resolved in the present work the interfacial composition during and after the interactions of a saturated atmosphere of oil vapor with soluble surfactant solutions at a planar water/air interface for the first time. Experiments were conducted on interactions of hexane vapor with solutions of alkyltrimethylammonium bromides and sodium dodecyl sulfate to observe the balance between cooperativity and competition of the components at the interface. In all cases, hexane adsorption was strongly enhanced by the presence of the surfactant, even at bulk surfactant concentrations four orders of magnitude below the critical micelle concentration. Cooperativity of the surfactant adsorption was observed only for sodium dodecyl sulfate at intermediate bulk concentrations, yet for all four systems, competition set in at higher concentrations, as hexane adsorption reduced the surfactant surface excess. The data fully supported the complete removal of hexane from the interface following venting of the system to remove the saturated atmosphere of oil vapor. These results help to identify future experiments that would elaborate and could explain the cooperativity of surfactant adsorption, such as on cationic surfactants with short alkyl chains and a broader series of anionic surfactants. This work holds relevance for oil recovery applications with foam, where there is a gas phase saturated with oil vapor.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41613369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natun Dasgupta, J. Wang, V. A. Nguyen, M. Gauthier
{"title":"Thermoresponsive Starch Nanoparticles for the Extraction of Bitumen from Oil Sands","authors":"Natun Dasgupta, J. Wang, V. A. Nguyen, M. Gauthier","doi":"10.3390/colloids6040067","DOIUrl":"https://doi.org/10.3390/colloids6040067","url":null,"abstract":"Starch nanoparticles (SNPs) useful for the extraction of bitumen from oil sands were obtained by modification with thermoresponsive poly(di(ethylene glycol) methyl ether methacrylate) (PMEO2MA) segments through RAFT (Reversible Addition–Fragmentation chain Transfer) grafting. Since PMEO2MA exhibits a Lower Critical Aggregation Temperature (LCAT), the polymer-grafted SNPs are amphiphilic above the LCAT of the thermoresponsive polymer and can interact efficiently with bitumen in the oil sands, facilitating its extraction. The PMEO2MA-grafted SNPs form micellar aggregates that remain dispersed in water but can shuttle the bitumen component out of the sand and silt mixture in the extraction process above the LCAT. Upon cooling, the hydrophobic PMEO2MA domains become hydrophilic again and the grafted SNPs remain in the water phase, while the extracted oil floats on the aqueous phase and can be skimmed off. The aqueous polymer solution may be reused in other extraction cycles. Extraction by tumbling of the oil-water-SNP mixtures in vials at 45 °C reached over 80% efficiency. The synthetic methods used provide easy control over the characteristics of the grafted SNPs (number and length of grafted PMEO2MA segments), and therefore over their hydrophilic-lipophilic balance (HLB). The SNP-g-PMEO2MA samples were characterized by 1H NMR, UV-visible spectroscopy and dynamic light scattering analysis, and the grafted PMEO2MA chains were cleaved from the starch substrates for analysis by gel permeation chromatography.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48860212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolás Torasso, Paula González-Seligra, Federico Trupp, D. Grondona, S. Goyanes
{"title":"Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity","authors":"Nicolás Torasso, Paula González-Seligra, Federico Trupp, D. Grondona, S. Goyanes","doi":"10.3390/colloids6040066","DOIUrl":"https://doi.org/10.3390/colloids6040066","url":null,"abstract":"Aromatic hydrocarbons in water is one of the collateral effects of the petrochemical industry and represents a serious problem both for their toxicity and environmental contamination. In this work, an innovative amphiphilic membrane was developed capable of rapidly removing hydrocarbons (such as BTEX) present in water under the solubility limit. Firstly, a Janus nanostructured membrane was developed from the deposition of superhydrophobic carbonaceous nanoparticles (CNPs) synthesized by radiofrequency plasma polymerization on a hydrophilic electrospun poly(vinyl alcohol) mat. Secondly, this membrane was turned amphiphilic by UV exposure, allowing water to pass through. The surface properties of the membranes were studied through SEM, contact angle, and FTIR analysis. Dead-end experiments showed that the toluene and xylene selective sorption capacity reached the outstanding adsorption capacity of 647 mg/g and 666 mg/g, respectively, and that the membrane could be reused three times without efficiency loss. Furthermore, swelling of the PVA fibers prevented the liberation of NPs. The selective sorption capacity of the UV-exposed CNPs was explained by studying the interfacial energy relations between the materials at play. This work provides a simple, low-cost, and scalable technique to develop membranes with great potential for water remediation, including the removal of volatile organic compounds from produced water, as well as separating oil-in-water emulsions.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48109830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. R. Richter, José G. Veras-Neto, J. S. Sousa, J. F. S. Mendes, Raquel O. S. Fontenelle, Stéphanie A. N. M. Silva, J. D. B. Marinho-Filho, A. J. Araujo, J. Feitosa, H. C. Paula, F. Goycoolea, R. C. Paula
{"title":"Effect of Acyl Chain Length on Hydrophobized Cashew Gum Self-Assembling Nanoparticles: Colloidal Properties and Amphotericin B Delivery","authors":"A. R. Richter, José G. Veras-Neto, J. S. Sousa, J. F. S. Mendes, Raquel O. S. Fontenelle, Stéphanie A. N. M. Silva, J. D. B. Marinho-Filho, A. J. Araujo, J. Feitosa, H. C. Paula, F. Goycoolea, R. C. Paula","doi":"10.3390/colloids6040065","DOIUrl":"https://doi.org/10.3390/colloids6040065","url":null,"abstract":"Given its many potential applications, cashew gum hydrophobic derivatives have gained increasing attraction in recent years. We report here the effect of acyl chain length on hydrophobized cashew gum derivatives, using acetic, propionic, and butyric anhydrides on self-assembly nanoparticle properties and amphotericin B delivery. Nanoparticles with unimodal particle size distribution, highly negative zeta potential, and low PDI were produced. Butyrate cashew gum nanoparticles presented smaller size (<~100 nm) than acetylated and propionate cashew gum nanoparticles and no cytotoxicity in murine fibroblast cells was observed up to 100 µg/mL for loaded and unloaded nanoparticles. As a proof of concept of the potential use of the developed nanoparticle as a drug carrier formulation, amphotericin B (AmB) was encapsulated and fully characterized in their physicochemical, AmB association and release, stability, and biological aspects. They exhibited average hydrodynamic diameter lower than ~200 nm, high AmB efficiency encapsulations (up to 94.9%), and controlled release. A decrease in AmB release with the increasing of the anhydride chain length was observed, which explains the differences in antifungal activity against Candida albicans strains. An excellent storage colloidal stability was observed for unloaded and loaded AmB without use of surfactant. Considering the AmB delivery, the acyl derivative with low chain length is shown to be the best one, as it has high drug loading and AmB release, as well as low minimum inhibitory concentration against Candida albicans strains.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43665517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. A. Kleinubing, P. M. Outuki, Éverton da Silva Santos, J. Hoscheid, Getulio Capello Tominc, Mariana Dalmagro, Edson Antônio da Silva, M. M. S. Lima, C. Nakamura, M. Cardoso
{"title":"Stability Studies and the In Vitro Leishmanicidal Activity of Hyaluronic Acid-Based Nanoemulsion Containing Pterodon pubescens Benth. Oil","authors":"S. A. Kleinubing, P. M. Outuki, Éverton da Silva Santos, J. Hoscheid, Getulio Capello Tominc, Mariana Dalmagro, Edson Antônio da Silva, M. M. S. Lima, C. Nakamura, M. Cardoso","doi":"10.3390/colloids6040064","DOIUrl":"https://doi.org/10.3390/colloids6040064","url":null,"abstract":"The physicochemical and microbiological stability of a hyaluronic acid-based nanostructured topical delivery system containing P. pubescens fruit oil was evaluated, and the in vitro antileishmanial activity of the nanoemulsion against Leishmania amazonensis and the cytotoxicity on macrophages was investigated. The formulation stored at 5 ± 2 °C, compared with the formulation stored at 30 and 40 ± 2 °C, showed a higher chemical and physical stability during the period analyzed and in the accelerated physical stability study. The formulation stored at 40 °C presented a significant change in droplet diameter, polydispersity index, zeta potential, pH, active compound, and consistency index and was considered unstable. The microbiological stability of the formulations was confirmed. The leishmanicidal activity of the selected system against intracellular amastigotes was significantly superior to that observed for the free oil. However, further research is needed to explore the use of the hyaluronic acid-based nanostructured system containing P. pubescens fruit oil for the treatment of cutaneous leishmaniasis.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46630542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Evaluation of Foam Diversion for EOR in Heterogeneous Carbonate Rocks","authors":"Motaz Taha, P. Patil, Q. Nguyen","doi":"10.3390/colloids6040063","DOIUrl":"https://doi.org/10.3390/colloids6040063","url":null,"abstract":"Immiscible gas injection applied to heterogeneous carbonate reservoirs can be inefficient due to poor conformance control. Foam mobility control is proposed in this work as a solution for gas conformance issues in such reservoirs. A unique experimental program was developed to evaluate alkyl polyglucoside (APG) stabilized foam for foaming ability, emulsion-forming tendency and resistance to oil. Dynamic methane foam behavior is systematically studied through single and dual injection core flooding experiments, simulating foam diversion during immiscible methane flooding in a layered reservoir with a significant layer permeability contrast. Results show a stable foam-oil system with no viscous emulsions at very high formation brine salinity (144,000 ppm total dissolved solids). Single-core floods for the high permeability layer (Unit-A) showed that foam viscosity of 27 cP could be achieved at 11% oil saturation (So). Under similar oil-wet condition, the low permeability zone (Unit-B) could generate foam of 21 cP at 18.9% So, indicating an increase in injected fluid mobility reduction with permeability. Dual-core injection experiments, which is designed to evaluate accurately fluid diversion capacity of such foams, reveals remarkable dynamic foam behaviors. While the water-wet condition indicates the scalability of foam behaviors (i.e., the ability of foam to control fluid mobility against the variation of rock permeability) between the single and composite core systems, the oil-wet condition confirms good foam resistance to residual oil that resulted in an increase in Unit B production from 46 to 82%, and 74 to 85% for Unit-A. Moreover, dual-core floods representing premature waterfloods (i.e., higher oil saturation) shows even more dramatic incremental oil recovery (44 to 81% in Unit-A and 17.5 to 71% in Unit-B), evidencing the ability of foam to self-viscosify with permeability variation at varying oil saturations.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45639798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Colorimetric Detection of Noradrenaline in Wastewater Using Citrate-Capped Colloidal Gold Nanoparticles Probe","authors":"Numeerah Ally, N. Hendricks, B. Gumbi","doi":"10.3390/colloids6040061","DOIUrl":"https://doi.org/10.3390/colloids6040061","url":null,"abstract":"This study reports a simple, fast, and low-cost detection of noradrenaline (NA) in wastewater using citrate-capped colloidal gold nanoparticles (AuNPs). The addition of NA to citrate-capped colloidal AuNPs generates a colour modulation that the bare eye can detect due to the aggregation of the colloidal AuNPs. The relationship between the NA concentration and colloidal AuNPs aggregation was further monitored by ultraviolet–visible light (UV–vis) spectroscopy in an aqueous solution. The method displayed a linear range of 0–500 μM with R2 = 0.99 and an LOD and LOQ of 42.2 and 140.5 μM. Application in an environmental sample collected from the Darville Wastewater Treatment Plant shows that this work provided a cost-effective and spectrophotometric method that could be used for monitoring contamination in wastewater.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48513513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis D. Ávalos González, M. Hernández-Contreras, K. Martínez
{"title":"The Viscosity and Self-Diffusion of Some Real Colloidal Ferrofluids","authors":"Luis D. Ávalos González, M. Hernández-Contreras, K. Martínez","doi":"10.3390/colloids6040062","DOIUrl":"https://doi.org/10.3390/colloids6040062","url":null,"abstract":"One primary concern in colloid science is understanding the relationship of its macroscopic rheology and diffusion behavior with the observed microscopic arrangements of the nanoparticles in the fluid. This manuscript addresses the study of these dynamical properties through a first-principle stochastic method. Both properties directly relate to the observed fluid structure factor, which depends on a few known material parameters. However, in the literature, this static quantity is reported up to the first prominent peak of its small momentum transfer of the scattered radiation, leading to inaccurate determination of the transport properties. Here, it is proposed to use the rescaled mean spherical approximation under the requirement of fitting the experimental data of the structure beyond the dependence of more significant wave numbers. The predicted viscosity agrees with the observed ones at a low volume fraction of particles for ferrofluids dispersed in polymer solvents. This rheological quantity is inversely related to the self-diffusion coefficient of a tracer particle.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45909128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Escandón, D. Torres, C. Hernández, Juan R. Gómez, R. Vargas
{"title":"Transient Analysis of the Electro-Osmotic Flow of Multilayer Immiscible Maxwell Fluids in an Annular Microchannel","authors":"J. Escandón, D. Torres, C. Hernández, Juan R. Gómez, R. Vargas","doi":"10.3390/colloids6040060","DOIUrl":"https://doi.org/10.3390/colloids6040060","url":null,"abstract":"This work investigates the transient multilayer electro-osmotic flow of viscoelastic fluids through an annular microchannel. The dimensionless mathematical model of multilayer flow is integrated by the linearized Poisson-Boltzmann equation, the Cauchy momentum equation, the rheological Maxwell model, initial conditions, and the electrostatic and hydrodynamic boundary conditions at liquid-liquid and solid-liquid interfaces. Although the main force that drives the movement of fluids is due to electrokinetic effects, a pressure gradient can also be added to the flow. The semi-analytical solution for the electric potential distribution and velocity profiles considers analytical techniques as the Laplace transform method, with numerical procedures using the inverse matrix method for linear algebraic equations and the concentrated matrix exponential method for the inversion of the Laplace transform. The results presented for velocity profiles and velocity tracking at the transient regime reveal an interesting oscillatory behavior that depends on elastic fluid properties via relaxation times. The time required for the flow to reach steady-state is highly dependent on the viscosity ratios and the dimensionless relaxation times. In addition, the influence of other dimensionless parameters on the flow as the electrokinetic parameters, zeta potentials at the walls, permittivity ratios, ratio of pressure forces to electro-osmotic forces, number of fluid layers, and annular thickness are investigated. The findings of this study have significant implications for the precise control of parallel fluid transport in microfluidic devices for flow-focusing applications.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48065957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deposition of Colloidal Magnetite on Stainless Steel in Simulated Steam Generator Conditions—Experiments and Modeling","authors":"I. Betova, M. Bojinov, V. Karastoyanov","doi":"10.3390/colloids6040059","DOIUrl":"https://doi.org/10.3390/colloids6040059","url":null,"abstract":"Sludge formation via colloidal magnetite deposition in steam generators is an important phenomenon that significantly influences the thermohydraulic properties and corrosion of structural materials. This paper aims to verify a model of sludge deposition and consolidation with emphasis on its most significant parameters and their experimental estimation. In-situ electrochemical impedance spectroscopic (EIS) measurements are employed for quantitative evaluation of magnetite deposition kinetics on stainless steel in ammonia-ethanolamine (AMETA) secondary coolant at different temperatures. Parameterization of the model by quantitative comparison of the mixed-conduction model (MCM) with experimental data is discussed. Model predictions are compared with literature data from laboratory experiments and plant operation. Conclusions are drawn about the applicability of the model for quantitative assessment of sludge deposition and consolidation rates.","PeriodicalId":10433,"journal":{"name":"Colloids and Interfaces","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44393312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}