Chinese Medicine最新文献

筛选
英文 中文
In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry. 利用离线二维液相色谱和混合离子阱飞行时间质谱技术对沉香中2-(2-苯乙基)少量色素低聚物进行深入表征。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-27 DOI: 10.1186/s13020-025-01073-6
Huixia Huo, Hang Zhang, Huiting Liu, Jiale Ma, Qian Zhang, Yunfang Zhao, Jiao Zheng, Pengfei Tu, Yuelin Song, Jun Li
{"title":"In-depth characterization of minor 2-(2-phenylethyl)chromone oligomers from Chinese agarwood by integrating offline two-dimensional liquid chromatography and hybrid ion trap time-of-flight mass spectrometry.","authors":"Huixia Huo, Hang Zhang, Huiting Liu, Jiale Ma, Qian Zhang, Yunfang Zhao, Jiao Zheng, Pengfei Tu, Yuelin Song, Jun Li","doi":"10.1186/s13020-025-01073-6","DOIUrl":"10.1186/s13020-025-01073-6","url":null,"abstract":"<p><p>Those minor, even trace natural products sometimes exhibit exciting activities and possess unique structures; however, it is challenging to pursue and identify such components using routine LC-MS/MS platforms attributing to their low distribution levels in herbs, the overlapping effects from the abundant ingredients and the high-level structural diversity. Here, an off-line two-dimensional liquid chromatography hook up hybrid ion trap time-of-flight mass spectrometry program was exploited to facilitate the exposure of those minor components in chromatographic domain and to acquire high-resolution multi-stage mass spectra, and the less abundant 2-(2-phenylethyl)chromone (PEC) oligomers from Chinese agarwood that is one of the most precious herbal medicines were concerned to illustrate and assess the applicability towards capturing and structurally annotating those minor components. The mass fragmentation pathways of PEC dimers, in particular the linkage fission between monomers, were proposed by assaying eighteen authentic compounds that covered different conjugation manners, and subsequently applied for the tentative structural identification of observed components. Thereafter, targeted purification was conducted to generate eight new, trace PEC dimers to justify the annotated structures. As a result, heterocyclic ring fission was the diagnostic fragmentation pathways for PEC dimers. In total, 199 PECs were discovered and characterized, consisting of 74 dimers and five trimers. Noteworthily, after structural identification with NMR assays, the confirmative structures of those eight new PEC dimers agreed well with the identities suggested by mass fragmentation rules. Above all, PEC derivatives, notably trace oligomers, in Chinese agarwood were profiled in depth, resulting in a number of interesting structures.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"26"},"PeriodicalIF":5.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Huqi formula suppresses hepatocellular carcinoma growth by modulating the PI3K/AKT/mTOR pathway and promoting T cell infiltration. 虎芪方通过调节PI3K/AKT/mTOR通路,促进T细胞浸润抑制肝癌细胞生长。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-19 DOI: 10.1186/s13020-025-01061-w
Donghao Yin, Xiang Li, Xuemeng Yang, Xiaofei Shang, Zhen Li, Jiahao Geng, Yanyu Xu, Zijing Xu, Zixuan Wang, Zimeng Shang, Zhiyun Yang, Linlan Hu, Quanwei Li, Jiabo Wang, Xinhua Song, Xiuhui Li, Xiaojun Wang
{"title":"Huqi formula suppresses hepatocellular carcinoma growth by modulating the PI3K/AKT/mTOR pathway and promoting T cell infiltration.","authors":"Donghao Yin, Xiang Li, Xuemeng Yang, Xiaofei Shang, Zhen Li, Jiahao Geng, Yanyu Xu, Zijing Xu, Zixuan Wang, Zimeng Shang, Zhiyun Yang, Linlan Hu, Quanwei Li, Jiabo Wang, Xinhua Song, Xiuhui Li, Xiaojun Wang","doi":"10.1186/s13020-025-01061-w","DOIUrl":"10.1186/s13020-025-01061-w","url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) poses ongoing difficulties for public health systems due to its high incidence and poor prognosis. Huqi formula (HQF), a well-known prescription in traditional Chinese medicine, has demonstrated notable clinical effectiveness in the treatment of HCC. However, the mechanisms underlying its therapeutic effects have yet to be completely elucidated.</p><p><strong>Purpose: </strong>This study aimed to investigate the anti-HCC effects of HQF and its underlying mechanisms.</p><p><strong>Methods: </strong>Chemical profiling and quantification of HQF were conducted by LC-MS and HPLC. Orthotopic and subcutaneous tumor models were established through hydrodynamic injection of Akt/Nras plasmids and subcutaneous injection of c-Met/sgPten cells, respectively, to evaluate the therapeutic effects of HQF on HCC. Network pharmacology, RNA-Seq, molecular docking, Western blot, and flow cytometry were employed to assess the anti-HCC mechanisms.</p><p><strong>Results: </strong>LC-MS analysis identified 41 components, with HPLC quantification showing salvianolic acid B as the most abundant compound (0.303%). In Akt/Nras and c-Met/sgPten-induced HCC models, HQF significantly reduced tissue damage, improved liver function, and inhibited HCC progression. Mechanistic studies revealed that HQF induced apoptosis in HCC cells by downregulating p-PI3K, p-AKT, and p-mTOR expression, with molecular docking indicating the strongest binding affinity between salvianolic acid B and PI3K. HQF further enhanced CD4<sup>+</sup> and CD8<sup>+</sup> T cell infiltration within the tumor microenvironment. When combined with PD-1 therapy, HQF improved therapeutic efficacy against HCC. Finally, toxicity assays confirmed the safety profile of HQF.</p><p><strong>Conclusion: </strong>HQF demonstrated significant anti-HCC effects and a synergistic effect with PD-1, could be used as an alternative therapeutic agent for HCC.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"25"},"PeriodicalIF":5.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Magnolia kobus DC. suppresses neointimal hyperplasia by regulating ferroptosis and VSMC phenotypic switching in a carotid artery ligation mouse model. 更正:白玉兰。在颈动脉结扎小鼠模型中,通过调节铁下垂和VSMC表型转换抑制内膜增生。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-18 DOI: 10.1186/s13020-025-01066-5
Jong Min Kim, Yiseul Kim, Hyun-Jin Na, Haeng Jeon Hur, Sang Hee Lee, Mi Jeong Sung
{"title":"Correction: Magnolia kobus DC. suppresses neointimal hyperplasia by regulating ferroptosis and VSMC phenotypic switching in a carotid artery ligation mouse model.","authors":"Jong Min Kim, Yiseul Kim, Hyun-Jin Na, Haeng Jeon Hur, Sang Hee Lee, Mi Jeong Sung","doi":"10.1186/s13020-025-01066-5","DOIUrl":"10.1186/s13020-025-01066-5","url":null,"abstract":"","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"24"},"PeriodicalIF":5.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying traditional Chinese medicine combinations for breast cancer treatment based on transcriptional regulation and chemical structure. 基于转录调控和化学结构确定治疗乳腺癌的中药组合。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-14 DOI: 10.1186/s13020-025-01074-5
Shensuo Li, Lijun Zhang, Wen Zhang, Hongyu Chen, Mei Hong, Jianhua Xia, Weidong Zhang, Xin Luan, Guangyong Zheng, Dong Lu
{"title":"Identifying traditional Chinese medicine combinations for breast cancer treatment based on transcriptional regulation and chemical structure.","authors":"Shensuo Li, Lijun Zhang, Wen Zhang, Hongyu Chen, Mei Hong, Jianhua Xia, Weidong Zhang, Xin Luan, Guangyong Zheng, Dong Lu","doi":"10.1186/s13020-025-01074-5","DOIUrl":"10.1186/s13020-025-01074-5","url":null,"abstract":"<p><p>Breast cancer (BC) is a prevalent form of cancer among women. Despite the emergence of numerous therapies over the past few decades, few have achieved the ideal therapeutic effect due to the heterogeneity of BC. Drug combination therapy is seen as a promising approach to cancer treatment. Traditional Chinese medicine (TCM), known for its multicomponent nature, has been validated for its anticancer properties, likely due to the synergy effect of the key components. However, identifying effective component combinations from TCM is challenging due to the vast combination possibilities and limited prior knowledge. This study aims to present a strategy for discovering synergistic compounds based on transcriptional regulation and chemical structure. First, BC-related gene sets were used to screen TCM-derived compound combinations guided by synergistic regulation. Then, machine learning models incorporating chemical structural features were established to identify potential compound combinations. Subsequently, the pair of honokiol and neochlorogenic acid was selected by integrating the results of compound combination screening. Finally, cell experiments were conducted to confirm the synergistic effect of the pair against BC. Overall, this study offers an integrated screening strategy to discover compound combinations of TCM against BC. The tumor cell suppression effect of the honokiol and neochlorogenic acid pair validated the effectiveness of the proposed strategy.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"23"},"PeriodicalIF":5.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143425086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The preventive effect and mechanism of Tibetan medicine Aconitum tanguticum (Maxim.) Stapf on acute lung injury. 藏药唐古乌头的预防作用及作用机制治疗急性肺损伤。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-12 DOI: 10.1186/s13020-025-01072-7
Xiang Meng, Yu-Peng Liu, Jia-Wei Dai, Yuan Bai, Xin Hu, Muhammad Azhar, Xian-Ju Huang
{"title":"The preventive effect and mechanism of Tibetan medicine Aconitum tanguticum (Maxim.) Stapf on acute lung injury.","authors":"Xiang Meng, Yu-Peng Liu, Jia-Wei Dai, Yuan Bai, Xin Hu, Muhammad Azhar, Xian-Ju Huang","doi":"10.1186/s13020-025-01072-7","DOIUrl":"10.1186/s13020-025-01072-7","url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Aconitum tanguticum (Maxim.) Stapf (ATS) is a rare Tibetan medicinal plant that belongs to the Ranunculaceae family. This herb is mainly distributed in the high-altitude areas of Qinghai, Gansu provinces, and Tibetan Autonomous Region in China. In Tibetan medicine, ATS is mainly used to treat lung inflammation, hepatitis, gastrointestinal diseases, influenza, fever caused by infectious diseases, food poisoning, snake and scorpion bites, and yellow water disease. ATS has anti-inflammatory, antiviral, and other pharmacological effects, according to recent research. It is welltolerated by individuals from diverse ethnic groups and has a long history of use in Tibetan medicine.</p><p><strong>Aim of the study: </strong>This study investigated the preventive effects of ATS alcoholic extract on acute lung injury (ALI) in mice and aimed to elucidate its possible mechanism of action.</p><p><strong>Materials and methods: </strong>Alveolar epithelial cells A549 and specific pathogen-free C57BL/6 mice were induced with lipopolysaccharide (LPS) to establish ALI models both in vivo and in vitro and to explore the pharmacological effects and therapeutic mechanisms of ATS.</p><p><strong>Results: </strong>ATS down-regulated the mRNA levels of inflammatory factors NF-κB p65, TNF-α, IL-1β, and IL-8, inhibited the release of reactive oxygen species, inhibited epithelial-mesenchymal transition caused by sustained cell injury, promoted the Keap1/Nrf2/HO-1 signalling pathway, reduced the degree of oxidative stress in vivo, and inhibited the production of proteins associated with LPS-induced ferroptosis.</p><p><strong>Conclusion: </strong>The Tibetan medicine ATS reduced pulmonary haemorrhage and oedema in ALI mice, alleviated the degree of lung tissue lesions, inhibited the expression of inflammatory factors and apoptosis, and plays a preventive role against acute lung injury in mice.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"21"},"PeriodicalIF":5.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organoid, organ-on-a-chip and traditional Chinese medicine. 类器官,芯片上的器官和中医。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-12 DOI: 10.1186/s13020-025-01071-8
Jiayue Yang, Yu Jiang, Mingxing Li, Ke Wu, Shulin Wei, Yueshui Zhao, Jing Shen, Fukuan Du, Yu Chen, Shuai Deng, Zhangang Xiao, Wen Yuan, Xu Wu
{"title":"Organoid, organ-on-a-chip and traditional Chinese medicine.","authors":"Jiayue Yang, Yu Jiang, Mingxing Li, Ke Wu, Shulin Wei, Yueshui Zhao, Jing Shen, Fukuan Du, Yu Chen, Shuai Deng, Zhangang Xiao, Wen Yuan, Xu Wu","doi":"10.1186/s13020-025-01071-8","DOIUrl":"10.1186/s13020-025-01071-8","url":null,"abstract":"<p><p>In the past few years, the emergence of organoids and organ-on-a-chip (OOAC) technologies, which are complementary to animal models and two-dimensional cell culture methods and can better simulate the internal environment of the human body, provides a new platform for traditional Chinese medicine (TCM) studies. Organoids and OOAC techniques have been increasingly applied in the fields of drug screening, drug assessment and development, personalized therapies, and developmental biology, and there have been some application cases in the TCM studies. In this review, we summarized the current status of using organoid and OOAC technologies in TCM research and provide key insights for future study. It is believed that organoid and OOAC technologies will play more and more important roles in research and make greater contributions to the innovative development of TCM.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"22"},"PeriodicalIF":5.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143406003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Aidi injection inhibits the migration and invasion of gefitinib-resistant lung adenocarcinoma cells by regulating the PLAT/FAK/AKT pathway. 更正:爱地注射液通过调节PLAT/FAK/AKT通路抑制吉非替尼耐药肺腺癌细胞的迁移和侵袭。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-10 DOI: 10.1186/s13020-025-01070-9
Jingyuan Zhang, Siyun Yang, Xiaodong Chen, Fanqin Zhang, Siyu Guo, Chao Wu, Tieshan Wang, Haojia Wang, Shan Lu, Chuanqi Qiao, Xiaoguang Sheng, Shuqi Liu, Xiaomeng Zhang, Hua Luo, Qinglin Li, Jiarui Wu
{"title":"Correction: Aidi injection inhibits the migration and invasion of gefitinib-resistant lung adenocarcinoma cells by regulating the PLAT/FAK/AKT pathway.","authors":"Jingyuan Zhang, Siyun Yang, Xiaodong Chen, Fanqin Zhang, Siyu Guo, Chao Wu, Tieshan Wang, Haojia Wang, Shan Lu, Chuanqi Qiao, Xiaoguang Sheng, Shuqi Liu, Xiaomeng Zhang, Hua Luo, Qinglin Li, Jiarui Wu","doi":"10.1186/s13020-025-01070-9","DOIUrl":"10.1186/s13020-025-01070-9","url":null,"abstract":"","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"20"},"PeriodicalIF":5.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of natural products targeting macrophage polarization in sepsis-induced lung injury. 靶向巨噬细胞极化的天然产物在败血症诱导的肺损伤中的作用。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-05 DOI: 10.1186/s13020-025-01067-4
Yake Li, Sinan Ai, Yuan Li, Wangyu Ye, Rui Li, Xiaolong Xu, Qingquan Liu
{"title":"The role of natural products targeting macrophage polarization in sepsis-induced lung injury.","authors":"Yake Li, Sinan Ai, Yuan Li, Wangyu Ye, Rui Li, Xiaolong Xu, Qingquan Liu","doi":"10.1186/s13020-025-01067-4","DOIUrl":"10.1186/s13020-025-01067-4","url":null,"abstract":"<p><p>Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"19"},"PeriodicalIF":5.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800549/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct mechanisms of electroacupuncture and manual acupuncture in modulating hypothalamic GnRH-tanycyte unit function of polycystic ovary syndrome. 电针和手针调节多囊卵巢综合征下丘脑gnrh -伸长细胞单位功能的不同机制。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-05 DOI: 10.1186/s13020-025-01068-3
Yu Wang, Yicong Wang, Yuning Chen, Wenhan Lu, Xiaoyu Tong, Jiajia Li, Wenhao Gao, Rui Huang, Wei Hu, Yi Feng
{"title":"Distinct mechanisms of electroacupuncture and manual acupuncture in modulating hypothalamic GnRH-tanycyte unit function of polycystic ovary syndrome.","authors":"Yu Wang, Yicong Wang, Yuning Chen, Wenhan Lu, Xiaoyu Tong, Jiajia Li, Wenhao Gao, Rui Huang, Wei Hu, Yi Feng","doi":"10.1186/s13020-025-01068-3","DOIUrl":"10.1186/s13020-025-01068-3","url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) is a complex neuroendocrine disorder characterized by dysregulation of the hypothalamus. Both electroacupuncture (EA) and manual acupuncture (MA) have demonstrated therapeutic efficacy in the treatment of PCOS through improvements in hypothalamic function. However, the underlying mechanisms remain poorly understood. Gonadotropin-releasing hormone (GnRH) neurons are pivotal in regulating hypothalamic endocrine function, whereas tanycyte, a specialized glial cell type, potentially contribute to this process.</p><p><strong>Methods: </strong>A dihydrotestosterone (DHT)-induced PCOS-like mouse model was used to investigate the effects of acupuncture. Tissue clearing and three-dimensional (3D) imaging were employed to visualize the hypothalamic GnRH neuronal network and assess postacupuncture modifications. Transcriptome sequencing was performed to identify changes in the gene profiles associated with EA and MA. Rax-CreER<sup>T2</sup> transgenic mice were utilized to investigate the molecular targets of EA in tanycytes.</p><p><strong>Results: </strong>EA significantly alleviated neuroendocrine dysfunction in PCOS-like mice by restoring the density and coverage of GnRH axonal projections. MA displayed similar therapeutic effects but had less pronounced effects on GnRH axons. Transcriptome analysis revealed distinct mechanisms for these two approaches: EA primarily regulates neuroglial plasticity, whereas MA predominantly targets neurotransmitter regulation. Both EA and MA share a common therapeutic target in the integrin family. Functional studies in Rax-CreER<sup>T2</sup> transgenic mice confirmed that Itgb1 plays a critical role in maintaining the balance of hypothalamic GnRH-tanycyte unit during EA treatment.</p><p><strong>Conclusions: </strong>EA exerts therapeutic effects on PCOS by targeting hypothalamic GnRH-tanycyte unit, with Itgb1 identified as a key factor. MA primarily functions through neurotransmitter regulation. These findings highlight potential hypothalamic targets and provide new insights into the distinct mechanisms of EA and MA.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"18"},"PeriodicalIF":5.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyssopus cuspidatus volatile oil: a potential treatment for steroid-resistant asthma via inhibition of neutrophil extracellular traps. 虎蹄草挥发油:通过抑制中性粒细胞胞外陷阱治疗类固醇抵抗性哮喘的潜在方法。
IF 5.3 3区 医学
Chinese Medicine Pub Date : 2025-02-03 DOI: 10.1186/s13020-025-01069-2
Xu Wang, Hui-Ming Peng, Meng-Ru Zhang, Jing-Jing Li, Chuan-Peng Zhao, Ya-Li Zhang, Si-Yu Wang, Si-Ying Zhu, Jian-Kang Lu, Hai-Long Yin, Qiang Yin, Jin-Bo Fang
{"title":"Hyssopus cuspidatus volatile oil: a potential treatment for steroid-resistant asthma via inhibition of neutrophil extracellular traps.","authors":"Xu Wang, Hui-Ming Peng, Meng-Ru Zhang, Jing-Jing Li, Chuan-Peng Zhao, Ya-Li Zhang, Si-Yu Wang, Si-Ying Zhu, Jian-Kang Lu, Hai-Long Yin, Qiang Yin, Jin-Bo Fang","doi":"10.1186/s13020-025-01069-2","DOIUrl":"10.1186/s13020-025-01069-2","url":null,"abstract":"<p><strong>Background: </strong>Steroid-resistant asthma (SRA) is a form of asthma resistant to corticosteroid therapy, which is characterized by the presence of neutrophil-predominant inflammatory response and neutrophil extracellular traps (NETs) formation. Hyssopus cuspidatus Boriss., a traditional Uyghur medicine, is known for its efficacy in treating inflammatory lung conditions such as asthma. However, the therapeutic impact and underlying mechanisms of Hyssopus cuspidatus Boriss.'s volatile oil (HVO) in SRA have not been fully elucidated.</p><p><strong>Methods: </strong>This study established an ovalbumin/lipopolysaccharide (OVA/LPS)-induced SRA mice model to evaluate the therapeutic effect of HVO on SRA. UPLC-QE-Orbitrap-MS was applied to analyze the serum compositions of HVO. Network pharmacology and molecular docking were employed to uncover the complex mechanisms of HVO in treating SRA and predict potential effective compounds in HVO. Furthermore, in vivo studies in SRA mice and in vitro studies using HL-60 cells and bone marrow neutrophils were conducted to validate the mechanism.</p><p><strong>Results: </strong>HVO could significantly ameliorate OVA/LPS-induced SRA symptoms, including airway hyperresponsiveness, airway inflammation, mucus overproduction and airway remodeling. 41 prototype compounds, 65 Phase I metabolites and 50 Phase II metabolites were identified in serum-containing HVO. The integration of network pharmacology with experimental validation revealed that HVO can inhibit the formation of NETs by targeting neutrophil elastase, thereby exerting a therapeutic influence on SRA. Meanwhile, molecular docking results showed that 3-methoxy-4-hydroxy mandelonitrile, 1,2,3,4-tetrahydro-1,5,7-trimethyl-naphthalene, cis-calamenene and aristol-1(10)-en-9-yl isovalerate may be the therapeutic compounds of HVO in treating SRA.</p><p><strong>Conclusion: </strong>These findings suggest that HVO is a promising therapeutic candidate for neutrophil-dominant SRA by targeting NETs formation.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"17"},"PeriodicalIF":5.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143122537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信