Chromosoma最新文献

筛选
英文 中文
Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. 利用合成DNA文库研究染色质和基因调控。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-09-01 Epub Date: 2023-05-15 DOI: 10.1007/s00412-023-00796-5
Holly Kleinschmidt, Cheng Xu, Lu Bai
{"title":"Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation.","authors":"Holly Kleinschmidt, Cheng Xu, Lu Bai","doi":"10.1007/s00412-023-00796-5","DOIUrl":"10.1007/s00412-023-00796-5","url":null,"abstract":"<p><p>Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"167-189"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10542970/pdf/nihms-1931647.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10313132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New voices in epigenetics. 表观遗传学的新声音。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-09-01 DOI: 10.1007/s00412-023-00805-7
Genevieve Almouzni, Tom Misteli, Yamini Dalal
{"title":"New voices in epigenetics.","authors":"Genevieve Almouzni, Tom Misteli, Yamini Dalal","doi":"10.1007/s00412-023-00805-7","DOIUrl":"10.1007/s00412-023-00805-7","url":null,"abstract":"","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"137-138"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9852144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions. 着丝粒和近心粒转录和转录本:它们的复杂关系、调控和功能。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-09-01 DOI: 10.1007/s00412-023-00801-x
Jing Zhu, Qiao Guo, Minjun Choi, Zhoubin Liang, Karen Wing Yee Yuen
{"title":"Centromeric and pericentric transcription and transcripts: their intricate relationships, regulation, and functions.","authors":"Jing Zhu,&nbsp;Qiao Guo,&nbsp;Minjun Choi,&nbsp;Zhoubin Liang,&nbsp;Karen Wing Yee Yuen","doi":"10.1007/s00412-023-00801-x","DOIUrl":"https://doi.org/10.1007/s00412-023-00801-x","url":null,"abstract":"<p><p>Centromeres are no longer considered to be silent. Both centromeric and pericentric transcription have been discovered, and their RNA transcripts have been characterized and probed for functions in numerous monocentric model organisms recently. Here, we will discuss the challenges in centromere transcription studies due to the repetitive nature and sequence similarity in centromeric and pericentric regions. Various technological breakthroughs have helped to tackle these challenges and reveal unique features of the centromeres and pericentromeres. We will briefly introduce these techniques, including third-generation long-read DNA and RNA sequencing, protein-DNA and RNA-DNA interaction detection methods, and epigenomic and nucleosomal mapping techniques. Interestingly, some newly analyzed repeat-based holocentromeres also resemble the architecture and the transcription behavior of monocentromeres. We will summarize evidences that support the functions of the transcription process and stalling, and those that support the functions of the centromeric and pericentric RNAs. The processing of centromeric and pericentric RNAs into multiple variants and their diverse structures may also provide clues to their functions. How future studies may address the separation of functions of specific centromeric transcription steps, processing pathways, and the transcripts themselves will also be discussed.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"211-230"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9868545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fluorescence-based super-resolution-microscopy strategies for chromatin studies. 基于荧光的超分辨率显微镜策略用于染色质研究。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-09-01 DOI: 10.1007/s00412-023-00792-9
Thomas C Q Burgers, Rifka Vlijm
{"title":"Fluorescence-based super-resolution-microscopy strategies for chromatin studies.","authors":"Thomas C Q Burgers,&nbsp;Rifka Vlijm","doi":"10.1007/s00412-023-00792-9","DOIUrl":"https://doi.org/10.1007/s00412-023-00792-9","url":null,"abstract":"<p><p>Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"191-209"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10356683/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9921662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Are extraordinary nucleosome structures more ordinary than we thought? 非凡的核小体结构比我们想象的更普通吗?
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-09-01 DOI: 10.1007/s00412-023-00791-w
Claris Y Y Chong, Lu Gan
{"title":"Are extraordinary nucleosome structures more ordinary than we thought?","authors":"Claris Y Y Chong,&nbsp;Lu Gan","doi":"10.1007/s00412-023-00791-w","DOIUrl":"https://doi.org/10.1007/s00412-023-00791-w","url":null,"abstract":"<p><p>The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"139-152"},"PeriodicalIF":1.6,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10225396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Regulation of the epigenome through RNA modifications. 通过RNA修饰调控表观基因组。
IF 2.5 4区 生物学
Chromosoma Pub Date : 2023-09-01 Epub Date: 2023-05-04 DOI: 10.1007/s00412-023-00794-7
Emmely A Patrasso, Sweta Raikundalia, Daniel Arango
{"title":"Regulation of the epigenome through RNA modifications.","authors":"Emmely A Patrasso, Sweta Raikundalia, Daniel Arango","doi":"10.1007/s00412-023-00794-7","DOIUrl":"10.1007/s00412-023-00794-7","url":null,"abstract":"<p><p>Chemical modifications of nucleotides expand the complexity and functional properties of genomes and transcriptomes. A handful of modifications in DNA bases are part of the epigenome, wherein DNA methylation regulates chromatin structure, transcription, and co-transcriptional RNA processing. In contrast, more than 150 chemical modifications of RNA constitute the epitranscriptome. Ribonucleoside modifications comprise a diverse repertoire of chemical groups, including methylation, acetylation, deamination, isomerization, and oxidation. Such RNA modifications regulate all steps of RNA metabolism, including folding, processing, stability, transport, translation, and RNA's intermolecular interactions. Initially thought to influence all aspects of the post-transcriptional regulation of gene expression exclusively, recent findings uncovered a crosstalk between the epitranscriptome and the epigenome. In other words, RNA modifications feedback to the epigenome to transcriptionally regulate gene expression. The epitranscriptome achieves this feat by directly or indirectly affecting chromatin structure and nuclear organization. This review highlights how chemical modifications in chromatin-associated RNAs (caRNAs) and messenger RNAs (mRNAs) encoding factors involved in transcription, chromatin structure, histone modifications, and nuclear organization affect gene expression transcriptionally.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 3","pages":"231-246"},"PeriodicalIF":2.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10244762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and inheritance of minichromosomes from Arabidopsis haploid induction. 拟南芥单倍体诱导小染色体的建立与遗传。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-06-01 DOI: 10.1007/s00412-023-00788-5
Ek Han Tan, Benny Ordoñez, Tejas Thondehaalmath, Danelle K Seymour, Julin N Maloof, Ravi Maruthachalam, Luca Comai
{"title":"Establishment and inheritance of minichromosomes from Arabidopsis haploid induction.","authors":"Ek Han Tan,&nbsp;Benny Ordoñez,&nbsp;Tejas Thondehaalmath,&nbsp;Danelle K Seymour,&nbsp;Julin N Maloof,&nbsp;Ravi Maruthachalam,&nbsp;Luca Comai","doi":"10.1007/s00412-023-00788-5","DOIUrl":"https://doi.org/10.1007/s00412-023-00788-5","url":null,"abstract":"<p><p>Minichromosomes are small, sometimes circular, rearranged chromosomes consisting of one centromere and short chromosomal arms formed by treatments that break DNA, including plant transformation. Minichromosomes have the potential to serve as vectors to quickly move valuable genes across a wide range of germplasm, including into adapted crop varieties. To realize this potential, minichromosomes must be reliably generated, easily manipulated, and stably inherited. Here we show a reliable method for minichromosome formation in haploids resulting from CENH3-mediated genome elimination, a process that generates genome instability and karyotypic novelty specifically on one parental genome. First, we identified 2 out of 260 haploids, each containing a single-copy minichromosome originating from centromeric regions of chromosomes 1 and 3, respectively. The chromosome 1 minichromosome we characterized did not pair at meiosis but displayed consistent transmission over nine selfing generations. Next, we demonstrated that CENH3-based haploid induction can produce minichromosomes in a targeted manner. Haploid inducers carrying a selectable pericentromeric marker were used to isolate additional chromosome-specific minichromosomes, which occurred in 3 out of 163 haploids. Our findings document the formation of heritable, rearranged chromosomes, and we provide a method for convenient minichromosome production.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 2","pages":"105-115"},"PeriodicalIF":1.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. 卫星的发射:DNA重复序列作为细胞遗传学工具在发现野生小麦的染色体宇宙。
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-06-01 DOI: 10.1007/s00412-023-00789-4
Pavel Yu Kroupin, Daniil S Ulyanov, Gennady I Karlov, Mikhail G Divashuk
{"title":"The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae.","authors":"Pavel Yu Kroupin,&nbsp;Daniil S Ulyanov,&nbsp;Gennady I Karlov,&nbsp;Mikhail G Divashuk","doi":"10.1007/s00412-023-00789-4","DOIUrl":"https://doi.org/10.1007/s00412-023-00789-4","url":null,"abstract":"<p><p>Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for \"classical\" wheat probes (pSc119.2 and Afa family) and \"universal\" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 2","pages":"65-88"},"PeriodicalIF":1.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9689645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors. Tof1-Csm3和Mrc1内聚建立因子提供的复制体-内聚素相互作用。
IF 2.5 4区 生物学
Chromosoma Pub Date : 2023-06-01 Epub Date: 2023-05-11 DOI: 10.1007/s00412-023-00797-4
Sudikchya Shrestha, Masashi Minamino, Zhuo A Chen, Céline Bouchoux, Juri Rappsilber, Frank Uhlmann
{"title":"Replisome-cohesin interactions provided by the Tof1-Csm3 and Mrc1 cohesion establishment factors.","authors":"Sudikchya Shrestha, Masashi Minamino, Zhuo A Chen, Céline Bouchoux, Juri Rappsilber, Frank Uhlmann","doi":"10.1007/s00412-023-00797-4","DOIUrl":"10.1007/s00412-023-00797-4","url":null,"abstract":"<p><p>The chromosomal cohesin complex establishes sister chromatid cohesion during S phase, which forms the basis for faithful segregation of DNA replication products during cell divisions. Cohesion establishment is defective in the absence of either of three non-essential Saccharomyces cerevisiae replication fork components Tof1-Csm3 and Mrc1. Here, we investigate how these conserved factors contribute to cohesion establishment. Tof1-Csm3 and Mrc1 serve known roles during DNA replication, including replication checkpoint signaling, securing replication fork speed, as well as recruiting topoisomerase I and the histone chaperone FACT. By modulating each of these functions independently, we rule out that one of these known replication roles explains the contribution of Tof1-Csm3 and Mrc1 to cohesion establishment. Instead, using purified components, we reveal direct and multipronged protein interactions of Tof1-Csm3 and Mrc1 with the cohesin complex. Our findings open the possibility that a series of physical interactions between replication fork components and cohesin facilitate successful establishment of sister chromatid cohesion during DNA replication.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 2","pages":"117-135"},"PeriodicalIF":2.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromosome stability @10! 染色体稳定性@10!
IF 1.6 4区 生物学
Chromosoma Pub Date : 2023-06-01 DOI: 10.1007/s00412-023-00795-6
K T Nishant, Kaustuv Sanyal
{"title":"Chromosome stability @10!","authors":"K T Nishant,&nbsp;Kaustuv Sanyal","doi":"10.1007/s00412-023-00795-6","DOIUrl":"https://doi.org/10.1007/s00412-023-00795-6","url":null,"abstract":"<p><p>A report on the 5th International Chromosome Stability Meeting, Thiruvananthapuram, India, Dec. 14-18, 2022.</p>","PeriodicalId":10248,"journal":{"name":"Chromosoma","volume":"132 2","pages":"59-63"},"PeriodicalIF":1.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信