Solar Compass最新文献

筛选
英文 中文
Economic indicators evaluation to study the feasibility of a solar agriculture farm: A case study 研究太阳能农业农场可行性的经济指标评估:案例研究
Solar Compass Pub Date : 2024-04-30 DOI: 10.1016/j.solcom.2024.100074
Shivani Gautam , D. Bhagwan Das , Ajay Kumar Saxena
{"title":"Economic indicators evaluation to study the feasibility of a solar agriculture farm: A case study","authors":"Shivani Gautam ,&nbsp;D. Bhagwan Das ,&nbsp;Ajay Kumar Saxena","doi":"10.1016/j.solcom.2024.100074","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100074","url":null,"abstract":"<div><p>The 209 kWp solar agricultural farm at Dayalbagh Educational Institute's Dairy Campus in Agra, India, is the subject of this economic analysis. This study analyzes economic indicators relevant to agriculture food production, such as gross financial margins, farm profits, and cost-benefit ratios. Other measured variables include NPV (net present value), PB (payback period), and LCOE (levelized cost of electricity) of solar power generation to determine the economic viability of this agrivoltaics (production of solar energy and agriculture on the same land) APV project. Farm profit and gross financial margins both are positive values of 161, 907 INR (Indian Rupees) and 316, 907 INR, respectively. The cost-benefit ratio was 1.5.The economic factors of solar energy generation were studied for two systems: surface-mounted or ground-mounted solar systems and an elevated solar system with agriculture production on the same ground (APV or agrivoltaics). Both systems had the same production capacity. Two different hypothetical situations were used for each system. In the first situation (Case Study A), the assumption was that solar power performance would remain constant during operation. In the second situation (Case Study B), the assumption was that annual performance would be reduced by 0.5 %.The results show that APV is better than the surface-mounted system because there is no significant difference between the payback periods of APV and surface-mounted systems; the NPV of APV is greater than the surface-mounted solar system for both the study case A and case B and the LCOE of APV is 55 % less than the LCOE of the surface-mounted solar system.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100074"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000080/pdfft?md5=13ef6964481efc6106ca279cbf5258ba&pid=1-s2.0-S2772940024000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards sustainable and affordable energy for isolated communities: A technical and economic comparative assessment of grid and solar PV supply for Kyiriboja, Ghana 为偏远社区提供可持续和负担得起的能源:加纳 Kyiriboja 电网和太阳能光伏供应的技术和经济比较评估
Solar Compass Pub Date : 2024-04-16 DOI: 10.1016/j.solcom.2024.100072
Nicholas Saddari, Nana Sarfo Agyemang Derkyi, Forson Peprah
{"title":"Towards sustainable and affordable energy for isolated communities: A technical and economic comparative assessment of grid and solar PV supply for Kyiriboja, Ghana","authors":"Nicholas Saddari,&nbsp;Nana Sarfo Agyemang Derkyi,&nbsp;Forson Peprah","doi":"10.1016/j.solcom.2024.100072","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100072","url":null,"abstract":"<div><p>Isolated communities are constrained with electricity access due to limited infrastructure, high grid extension costs, and a lack of energy security protections for vulnerable communities. Meanwhile, electricity access for all is important for the socio-economic development of the human race. Therefore, this study aims to present a techno-economic assessment of electricity supply options to off-grid communities through a case study (Kyiriboja). The study technically assessed the feasibility and appraised the two investment (supply) options (3 km grid extension and 108 kWp solar PV microgrid) using the net present value (NPV), the internal rate of return (IRR), and the profitability index (PI). The results show an NPV of GHS 906,988.73 ($77,520.40) for the grid extension option and an NPV of GHS 698,527.67 ($ 59,703.22) for the solar PV system option. The study obtained IRR, DPP, and PI values of 21 %, 8 years, and 1.7, respectively, for the grid extension option, while the solar PV option had 18 %, 9 years, and 1.4 for the IRR, DPP, and PI, respectively. The resulting annual energy production and CO<sub>2</sub> savings from the study for the solar PV option are 213,151.8 kWh and 181,179 kg respectively, while a savings of 4,529,476 kg can be achieved in the project's lifetime. The economic evaluation of the proposed solar PV microgrid with the application of carbon credit resulted higher profitability of solar PV microgrid than the grid extension. The study with carbon credit analysis recorded an NPV of GHS 1,077,309.77 ($92,077.76), IRR of 24 %, PI of 1.7, and DPP of 7 years.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100072"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000067/pdfft?md5=20682532e7183ecfb5a17dfff8c9c10c&pid=1-s2.0-S2772940024000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 70th anniversary of the Bell Telephone Laboratories "Solar Battery" discovery 贝尔电话实验室发现 "太阳能电池 "70 周年
Solar Compass Pub Date : 2024-04-08 DOI: 10.1016/j.solcom.2024.100073
Lawrence L. Kazmerski
{"title":"The 70th anniversary of the Bell Telephone Laboratories \"Solar Battery\" discovery","authors":"Lawrence L. Kazmerski","doi":"10.1016/j.solcom.2024.100073","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100073","url":null,"abstract":"<div><p>This year marks the 70th anniversary of the Bell Telephone Laboratories \"Solar Battery.\" This event was noted in the New York Times on March 26, 1954–and the device was a tipping point for photovoltaics technology. The Bell team was led by Daryl Chapin, Calvin Fuller, and Gerald Pearson. This humble mW sized device was foundational to the terawatts of PV cumulatively installed today.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100073"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000079/pdfft?md5=39891a717f9f5405243e481f19691adc&pid=1-s2.0-S2772940024000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140549860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the performance of hydro-solar hybrid (HSH) grid integration: A case study of Bui Generating Station, Ghana 评估水电-太阳能混合(HSH)并网的性能:加纳 Bui 发电站案例研究
Solar Compass Pub Date : 2024-03-08 DOI: 10.1016/j.solcom.2024.100071
Francisca Asare-Bediako , Eric Ofosu Antwi , Felix Amankwah Diawuo , Charles Dzikunu
{"title":"Assessing the performance of hydro-solar hybrid (HSH) grid integration: A case study of Bui Generating Station, Ghana","authors":"Francisca Asare-Bediako ,&nbsp;Eric Ofosu Antwi ,&nbsp;Felix Amankwah Diawuo ,&nbsp;Charles Dzikunu","doi":"10.1016/j.solcom.2024.100071","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100071","url":null,"abstract":"<div><p>Renewable energy sources (RES) are rapidly expanding as a result of energy security and environmental concerns. Despite their numerous benefits, they pose significant challenges to power grid operation. Ghana is dedicated to reaching a 10 % renewable energy mix target by 2030 to promote low-emission development. Ghana has the first hybrid power plant made up of 400MW hydropower plant and 50 MW solar PV plant supplying power to the national grid. The study designs a hydro-solar hybrid system configuration for Ghana's Bui generation unit, using data from the 50 MW ground-mounted solar PV and 133.33 MW hydropower units to assess the performance and challenges of the hydro-solar hybrid system at the Bui Generating Station. Methodology involves modeling and simulation in the DIgSILENT power factory software environment. Utilizing quasi-dynamic simulations, the study investigates variations in active power generation, voltage fluctuations, grid losses, and reactive power generation. Results highlight technical challenges such as voltage fluctuations and power loss, and propose mitigation measures. Comparisons between simulated and field data reveal discrepancies attributed to factors such as temperature effects, dust accumulation, and conductor resistance. Mitigation strategies are proposed, including energy storage expansion, smart grid implementation, advanced control techniques, FACTS device deployment and grid monitoring improvements. Despite limitations in data availability and simulation accuracy, the study underscores the system's reliability and provides insights for enhancing renewable energy integration in the region. Generally, the study contributes to advancing renewable energy integration efforts, with implications for sustainable development and climate action in Ghana and West Africa at large.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000055/pdfft?md5=37a90d7d2f56aa9a75f1e22ab4816a77&pid=1-s2.0-S2772940024000055-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dr. Morton B. Prince: Remembering a PV pioneer and extraordinary technology leader 莫顿-普林斯博士缅怀光伏先驱和非凡的技术领袖
Solar Compass Pub Date : 2024-02-23 DOI: 10.1016/j.solcom.2024.100069
Lawrence L. Kazmerski
{"title":"Dr. Morton B. Prince: Remembering a PV pioneer and extraordinary technology leader","authors":"Lawrence L. Kazmerski","doi":"10.1016/j.solcom.2024.100069","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100069","url":null,"abstract":"","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100069"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000031/pdfft?md5=40445f83d51a0dbf06dcd4070e7bc88a&pid=1-s2.0-S2772940024000031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation and integration of photovoltaic (PV) systems in Albanian energy landscape 评估和整合阿尔巴尼亚能源景观中的光伏 (PV) 系统
Solar Compass Pub Date : 2024-02-21 DOI: 10.1016/j.solcom.2024.100070
Aurela Qamili, Silva Kapia
{"title":"Evaluation and integration of photovoltaic (PV) systems in Albanian energy landscape","authors":"Aurela Qamili,&nbsp;Silva Kapia","doi":"10.1016/j.solcom.2024.100070","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100070","url":null,"abstract":"<div><p>As a country situated in a region with abundant solar resources, Albania has enormous potential for using solar energy through photovoltaic (PV) systems. With the energy crisis repeating itself over the years, now more than ever is the moment to assess and fully use this opportunity. This paper studies the current state of PV usage in Albania's energy sector and the opportunities and challenges coming together with this technology. Economic, social, and environmental benefits are discussed, as well as existing policies for renewable energy. It evaluates PV technology's role in the country's sustainable energy transition and analyzes various integration models like net-metering and feed-in tariffs. Successful projects and case studies are highlighted, while challenges such as regulatory complexities and public awareness are discussed. The study also assesses large-scale PV feasibility and emphasizes the need for integrated energy planning. This research aims to offer relevant information to Albanian policymakers, energy stakeholders, and investors to support the effective implementation of PV systems for a cleaner, more sustainable energy future. Furthermore, there is a lack of studies about renewables in Albania's reality. Enhancing the country's energy sustainability and reducing greenhouse gas emissions is important.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"10 ","pages":"Article 100070"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000043/pdfft?md5=e3932d2ae786f09a7a8e031fe5013f44&pid=1-s2.0-S2772940024000043-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Techno-economic viability of decentralised solar photovoltaic-based green hydrogen production for sustainable energy transition in Ghana 以分散式太阳能光伏发电为基础的绿色制氢技术在加纳可持续能源转型中的技术经济可行性
Solar Compass Pub Date : 2024-02-03 DOI: 10.1016/j.solcom.2024.100068
Louis Kwasi Osei , Flavio Odoi-Yorke , Richard Opoku , Bismark Baah , George Yaw Obeng , Lena Dzifa Mensah , Francis Kofi Forson
{"title":"Techno-economic viability of decentralised solar photovoltaic-based green hydrogen production for sustainable energy transition in Ghana","authors":"Louis Kwasi Osei ,&nbsp;Flavio Odoi-Yorke ,&nbsp;Richard Opoku ,&nbsp;Bismark Baah ,&nbsp;George Yaw Obeng ,&nbsp;Lena Dzifa Mensah ,&nbsp;Francis Kofi Forson","doi":"10.1016/j.solcom.2024.100068","DOIUrl":"https://doi.org/10.1016/j.solcom.2024.100068","url":null,"abstract":"<div><p>Transition to a sustainable energy supply is essential for addressing the challenges of climate change and achieving a low-carbon future. Green hydrogen produced from solar photovoltaic (PV) systems presents a promising solution in Ghana, where energy demands are increasing rapidly. The levelized cost of hydrogen (LCOH) is considered a critical metric to evaluate hydrogen production techniques, cost competitiveness, and economic viability. This study presents a comprehensive analysis of LCOH from solar PV systems. The study considered a 5 MW green hydrogen production plant in Ghana's capital, Accra, as a proposed system. The results indicate that the LCOH is about $9.49/kg, which is comparable to other findings obtained within the Sub-Saharan Africa region. The study also forecasted that the LCOH for solar PV-based hydrogen produced will decrease to $5–6.5/kg by 2030 and $2–2.5/kg by 2050 or lower, making it competitive with fossil fuel-based hydrogen. The findings of this study highlight the potential of green hydrogen as a sustainable energy solution and its role in driving the country's net-zero emissions agenda in relation to its energy transition targets. The study's outcomes are relevant to policymakers, researchers, investors, and energy stakeholders in making informed decisions regarding deploying decentralised green hydrogen technologies in Ghana and similar contexts worldwide.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"9 ","pages":"Article 100068"},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277294002400002X/pdfft?md5=8894c878960e1f8a487d4bc854b11797&pid=1-s2.0-S277294002400002X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of earth contact heating/cooling systems and a comparison of ground source heat pumps and earth air heat exchangers 地接触供暖/制冷系统回顾以及地源热泵和地空气热交换器的比较
Solar Compass Pub Date : 2024-01-22 DOI: 10.1016/j.solcom.2024.100067
Selen Cekinir , Leyla Ozgener
{"title":"A review of earth contact heating/cooling systems and a comparison of ground source heat pumps and earth air heat exchangers","authors":"Selen Cekinir ,&nbsp;Leyla Ozgener","doi":"10.1016/j.solcom.2024.100067","DOIUrl":"10.1016/j.solcom.2024.100067","url":null,"abstract":"<div><p>Countries should reduce greenhouse gas emissions and increase energy efficiency in alignment with the Paris Agreement and the European Green Deal. The adoption of environmentally friendly and low-energy systems, such as passive heating and cooling technologies, can significantly contribute to achieving this goal. The study covers the examination of new technologies ready for commercialization, economic developments to increase accessibility, scale-up of production to reduce costs, and notable case studies comparing ground source heat pump (GSHP) systems to solar building systems powered by earth-to-air heat exchangers (EAHE).</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"9 ","pages":"Article 100067"},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940024000018/pdfft?md5=54728412fe30cc18cf899b49bf04396c&pid=1-s2.0-S2772940024000018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139637471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for monitoring and classification in inverters from solar photovoltaic energy plants 用于太阳能光伏发电厂逆变器监测和分类的机器学习
Solar Compass Pub Date : 2023-12-13 DOI: 10.1016/j.solcom.2023.100066
Fabiola Pereira, Carlos Silva
{"title":"Machine learning for monitoring and classification in inverters from solar photovoltaic energy plants","authors":"Fabiola Pereira,&nbsp;Carlos Silva","doi":"10.1016/j.solcom.2023.100066","DOIUrl":"https://doi.org/10.1016/j.solcom.2023.100066","url":null,"abstract":"<div><p>The efficiency of solar energy farms requires detailed analytics and information on each inverter regarding voltage, current, temperature, and power. Monitoring inverters from a solar energy farm was shown to minimize the cost of maintenance, increase production and help optimize the performance of the inverters under various conditions. Machine learning algorithms are techniques to analyze data, classify and predict variables according to historic values and combination of different variables. The 140 kWp photovoltaic plant contains 300 modules of 255 W and 294 modules of 250 W with smart monitoring devices. In total the inverters are of type SMA Tripower of 25 kW and 10 kW. The 590 kWp photovoltaic plant contains 1312 Trina solar 450 W modules. In total the four inverters are SMA Sunny Tripower type of 110–60 CORE 2 with rated power of 440 kW were analyzed and several supervised learning algorithms were applied, and the accuracy was determined. The facility enables networked data and a machine learning algorithm for fault classification and monitoring was developed, energy efficiency was calculated and solutions to increase energy production and monitoring were developed for better reliability of components according to the monitorization and optimization of inverters.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"9 ","pages":"Article 100066"},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940023000346/pdfft?md5=8001d90dff56118300ab3e2716beec89&pid=1-s2.0-S2772940023000346-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in hydrogen production, storage, and fuel cell Technologies with an emphasis on inventions, innovations, and commercialization 氢生产、储存和燃料电池技术的最新进展,重点是发明、创新和商业化
Solar Compass Pub Date : 2023-12-01 DOI: 10.1016/j.solcom.2023.100065
Sage Sebastian , Samantha Wijewardane , Sesha Srinivasan
{"title":"Recent advances in hydrogen production, storage, and fuel cell Technologies with an emphasis on inventions, innovations, and commercialization","authors":"Sage Sebastian ,&nbsp;Samantha Wijewardane ,&nbsp;Sesha Srinivasan","doi":"10.1016/j.solcom.2023.100065","DOIUrl":"https://doi.org/10.1016/j.solcom.2023.100065","url":null,"abstract":"<div><p>The future is bright for hydrogen as a clean, mobile energy source to replace petroleum products. This paper examines new and emerging technologies for hydrogen production, storage and conversion and highlights recent commercialization efforts to realize its potential. Also, the paper presents selected notable patents issued within the last few years. There is no shortage of inventions and innovations in hydrogen technologies in both academia and industry. While metal hydrides and functionalized carbon-based materials have improved tremendously as hydrogen storage materials over the years, storing gaseous hydrogen in underground salt caverns has also become feasible in many commercial projects. Production of “blue hydrogen” is rising as a method of producing hydrogen in large quantities economically. Although electric/battery powered vehicles are dominating the green transport today, innovative hydrogen fuel cell technologies are knocking at the door, because of their lower refueling time compared to EV charging time. However, the highest impact of hydrogen technologies in transportation might be seen in the aviation industry. Hydrogen is expected to play a key role and provides hope in transforming aviation into a zero-carbon emission transportation over the next few decades.</p></div>","PeriodicalId":101173,"journal":{"name":"Solar Compass","volume":"8 ","pages":"Article 100065"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772940023000334/pdfft?md5=94bc296e27435aeafda84fb4013ad29f&pid=1-s2.0-S2772940023000334-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138474079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信