New CropsPub Date : 2024-09-21DOI: 10.1016/j.ncrops.2024.100052
Gaofeng Liu, Zixin Zhang
{"title":"Precise control of falling flowers and fruits is a key part of improving quality and efficiency","authors":"Gaofeng Liu, Zixin Zhang","doi":"10.1016/j.ncrops.2024.100052","DOIUrl":"10.1016/j.ncrops.2024.100052","url":null,"abstract":"<div><div>The strategic implementation of measures to minimize and optimize the timing of fruit drop plays a critical role in enhancing both quality and efficiency. Recent studies in <em>Arabidopsis</em> have substantiated the role of a complex kinase axis, centered on BR-SIGNALING KINASE 1 (BSK1), which regulates organ abscission in plants. These findings revealed that BSK proteins may act as scaffolds for assembling HAESA/HAESA-LIKE2 (HAE/HSL2) and YODA (YDA), facilitating YDA activation by plasma membrane receptors. Once activated, YDA initiates the mitogen-activated protein kinase (MAPK) phosphorylation cascade, which ultimately triggers abscission. Furthermore, research suggests that this process involves a diverse range of transcriptional regulatory mechanisms. The findings of this study offer valuable insights for investigating similar processes in other crops, significantly advancing the field of plant abscission research.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100052"},"PeriodicalIF":0.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-09-18DOI: 10.1016/j.ncrops.2024.100051
Dong Fu , Wenhua Wu , Ghazala Mustafa , Yong Yang , Pingfang Yang
{"title":"Molecular mechanisms of rice seed germination","authors":"Dong Fu , Wenhua Wu , Ghazala Mustafa , Yong Yang , Pingfang Yang","doi":"10.1016/j.ncrops.2024.100051","DOIUrl":"10.1016/j.ncrops.2024.100051","url":null,"abstract":"<div><div>Rice is a fundamental dietary worldwide. With the increasing adoption of direct seeding in rice cultivation, the need for rapid and synchronized germination, even under submerged conditions, has become critical. Additionally, addressing challenges such as pre-harvest sprouting and germination under various stress conditions is vital for improving rice production. Therefore, understanding the regulatory mechanisms that control rice seed germination is essential. Numerous studies have highlighted the pivotal roles of the phytohormones gibberellic acid (GA) and abscisic acid (ABA) in modulating rice seed germination, similar to their roles in <em>Arabidopsis</em>. Key factors, including genes that regulate germination under submergence, have been identified, further advancing our understanding of the molecular mechanisms underlying this process. This review synthesizes recent progress in the field, providing insights into the regulation of rice seed germination.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100051"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-09-12DOI: 10.1016/j.ncrops.2024.100048
Aaqib Shaheen , Zheng Li , Yingying Yang , Jinjin Xie , Lele Zhu , Can Li , Fang Nie , Meng Wang , Yixian Wang , Awais Rasheed , Hao Li , Yun Zhou , Chun-Peng Song
{"title":"Genetic regulation of wheat plant architecture and future prospects for its improvement","authors":"Aaqib Shaheen , Zheng Li , Yingying Yang , Jinjin Xie , Lele Zhu , Can Li , Fang Nie , Meng Wang , Yixian Wang , Awais Rasheed , Hao Li , Yun Zhou , Chun-Peng Song","doi":"10.1016/j.ncrops.2024.100048","DOIUrl":"10.1016/j.ncrops.2024.100048","url":null,"abstract":"<div><div>More than a third of the world’s population's primary source of food is common wheat (<em>Triticum aestivum</em> L.). The total yield must be boosted from 3 tons hec<sup>‐1</sup> to 5 tons per hec<sup>‐1</sup> to meet the global food demands by 2050. A major breeding objective is to change the plant architecture to develop varieties suited for intensive agricultural practices and able to withstand climate extremes. Modifying plant architecture could significantly improve productivity; however, it is challenging due to negative associations with key agronomic traits influencing yield. The current research focus of this decade revolves around three critical agronomic variables: tiller number, plant height, and tiller angle. These variables have a significant role in altering plant architecture and ultimately impacting the potential yield. The ideal plant architecture requires moderate planting density, a narrow tiller angle, and reduced plant height, which can be attained through special tiller arrangement. Here, we review the developmental biology and underpinning genetics of the plant architecture traits, especially the genetic factors and environmental factors influencing wheat architecture. The use of crop wild relatives (CWRs), such as <em>Aegilops tauschii,</em> can enhance wheat cultivation by increasing breeding diversity and introgressing beneficial genes into elite wheat germplasm through the recently developed rapid high-throughput introgression (RHI) protocol. Identifying defective mutants and characterizing their corresponding genes will assist us in understanding the molecular mechanism and deploying beneficial alleles to manipulate plant architecture.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100048"},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-09-11DOI: 10.1016/j.ncrops.2024.100047
Jie Wu , Ying Song , Guang-Yu Wan , Liang-Qi Sun , Jing-Xian Wang , Zi-Sheng Zhang , Cheng-Bin Xiang
{"title":"Boosting crop yield and nitrogen use efficiency: the hidden power of nitrogen-iron balance","authors":"Jie Wu , Ying Song , Guang-Yu Wan , Liang-Qi Sun , Jing-Xian Wang , Zi-Sheng Zhang , Cheng-Bin Xiang","doi":"10.1016/j.ncrops.2024.100047","DOIUrl":"10.1016/j.ncrops.2024.100047","url":null,"abstract":"<div><div>The macronutrient nitrogen (N) and micronutrient iron (Fe) are essential mineral elements for plant growth and development and participate in multiple vital life activities through intricate interactions. N and Fe fertilizers were found to increase crop yield when applied together. However, the N-Fe balance has not been clearly defined, and the underlying molecular mechanisms have remained unknown until recently. This review summarizes recent advances in N-Fe balance and highlights the critical role of the hub transcription factor NIN-like proteins (NLPs) that integrate N and Fe signals to improve crop yield and nitrogen use efficiency (NUE) as well as the molecular mechanism underlying N-Fe balance-boosted yield and NUE, which provides insight into not only the enhancement of crop yield and NUE but also the innovation of green fertilizers, greatly benefiting global sustainable agriculture and ecosystems.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100047"},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-09-04DOI: 10.1016/j.ncrops.2024.100046
Hu Duo , Meng Yin , Rui Wang
{"title":"Molecular mechanisms of resistance and future perspectives in plant breeding strategies against Sclerotinia sclerotiorum","authors":"Hu Duo , Meng Yin , Rui Wang","doi":"10.1016/j.ncrops.2024.100046","DOIUrl":"10.1016/j.ncrops.2024.100046","url":null,"abstract":"<div><p><em>Sclerotinia sclerotiorum</em> is one of the most destructive and widespread phytopathogenic ascomycetes, causing significant yield and economic losses. Numerous studies have explored its virulence, plant recognition, and prolonged interactions with host defense systems. However, the key genes involved in these processes and their potential application in future breeding for <em>S. sclerotiorum</em> resistance remain insufficiently explored. Recent advances have significantly deepened our understanding of the molecular mechanisms underlying the interaction between <em>S. sclerotiorum</em> and plants, providing novel insights into the pathogen's mechanism and identifying key candidate genes for enhancing plant resistance. In this review, we summarize current knowledge on <em>S. sclerotiorum</em> pathogenesis, challenges in breeding for resistance, genetic improvement strategies for combating <em>Sclerotinia</em> stem rot, and recent genome sequencing data related to <em>S. sclerotiorum</em> resistance. Our aim is to propose a comprehensive strategy for plant molecular breeding against <em>S. sclerotiorum</em>, leveraging newly developed tools for genetic improvement.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100046"},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000360/pdfft?md5=4b84c19e92f605ddb1881dfba3b57993&pid=1-s2.0-S2949952624000360-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142239347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-08-30DOI: 10.1016/j.ncrops.2024.100045
Shahid Ullah Khan , Minchao Qian , Shengting Li , Yonghai Fan , Hui Wang , Wei Chang , Osama Alam , Sumbul Saeed , Kun Lu
{"title":"Unveiling CRISPR/Cas in rapeseed: Triumphs, trials, and tomorrow","authors":"Shahid Ullah Khan , Minchao Qian , Shengting Li , Yonghai Fan , Hui Wang , Wei Chang , Osama Alam , Sumbul Saeed , Kun Lu","doi":"10.1016/j.ncrops.2024.100045","DOIUrl":"10.1016/j.ncrops.2024.100045","url":null,"abstract":"<div><div>The clustered regularly interspaced short palindromic repeats (CRISPR) genome-editing technique has revolutionized our understanding of plant genomes. Over a decade ago, scientists began using CRISPR/Cas to rapidly breed plant species, model and non-model crops, and modify plant genomes to study specific genes and metabolic pathways. While the CRISPR/Cas system holds immense potential for genome editing, numerous obstacles may prevent it from fully realizing this potential. This paper reviews the history and current state of CRISPR/Cas9-mediated gene editing technology in rapeseed. Our discussion focuses on the advancements CRISPR/Cas9 has made in enhancing plant characteristics such as yield traits, quality, and disease resistance. To provide comprehensive insights for research focused on gene function studies or genetic improvement through genome editing technology, we review the latest progress in plant applications using emerging precise genome editing technologies and discuss the limitations, including technological hurdles. We also explore CRISPR/Cas applications in oilseed rape to achieve improved results within this framework. This review covers genes controlling abiotic stresses in rapeseed at various developmental stages and examines related literature on CRISPR/Cas technology applications. While much remains to be discovered, the existing background information will guide future investigations into genetic enhancement using CRISPR, beyond what is discussed here. We believe this literature will inspire deep interest and create new opportunities for scientists working on rapeseed improvement.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100045"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of epigenetics in tomato stress adaptation","authors":"Marianne Delarue , Moussa Benhamed , Sotirios Fragkostefanakis","doi":"10.1016/j.ncrops.2024.100044","DOIUrl":"10.1016/j.ncrops.2024.100044","url":null,"abstract":"<div><p>Climate change poses a major challenge to agriculture, affecting crop production through shifting weather patterns and an increase in extreme conditions such as heat waves, droughts, and floods, all of which are further compounded by biotic stress factors. Tomatoes, a vital dietary staple and significant agricultural product worldwide, are particularly susceptible to these changes. The need for developing climate-resilient tomato varieties is more urgent than ever to ensure food security. Epigenetic modifications, such as DNA methylation and histone modifications, play essential roles in gene expression regulation. These modifications can affect plant traits and responses to environmental stresses, enabling tomatoes to maintain productivity despite variable climates or disease pressures. Tomato, as a model plant, offers valuable insights into the epigenetic mechanisms underlying fruit development and responses to stress. This review provides an overview of key discoveries regarding to tomato response and resilience mechanisms related to epigenetics, highlighting their potential in breeding strategies to enhance tomato resilience against both abiotic and biotic challenges, thereby promoting sustainable agricultural practices in the context of global climate change.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100044"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000347/pdfft?md5=d46a916db43b1410a9e4d46b951b2154&pid=1-s2.0-S2949952624000347-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-07-14DOI: 10.1016/j.ncrops.2024.100035
Xue Yuan , Ruiqing Liang , Gan Wang , Shuaipeng Ma , Na Liu , Yongfu Gong , Susan R. Mccouch , Haitao Zhu , Zupei Liu , Zhan Li , GuiFu Liu , Suhong Bu , Guiquan Zhang , Shaokui Wang
{"title":"Design of rice with low cadmium accumulation in grain using single segment substitution line","authors":"Xue Yuan , Ruiqing Liang , Gan Wang , Shuaipeng Ma , Na Liu , Yongfu Gong , Susan R. Mccouch , Haitao Zhu , Zupei Liu , Zhan Li , GuiFu Liu , Suhong Bu , Guiquan Zhang , Shaokui Wang","doi":"10.1016/j.ncrops.2024.100035","DOIUrl":"10.1016/j.ncrops.2024.100035","url":null,"abstract":"<div><p>Rice (<em>Oryza sativa</em> L.) is a major dietary source of cadmium (Cd). Developing rice varieties with reduced Cd levels in the grain is a cost-effective and practical approach to enhance food safety, particularly in regions with high Cd contamination. However, the genetic mechanisms underlying Cd accumulation in rice grains are not fully understood. In this study, we identified eight quantitative trait loci (QTLs) associated with Cd accumulation in rice grains through substitution mapping using single segment substitution lines (SSSLs). These QTLs, named <em>qCd‐2‐1</em>, <em>qCd‐3‐1</em>, <em>qCd‐3‐2</em>, <em>qCd‐5‐1</em>, <em>qCd‐6‐1</em>, <em>qCd‐7‐1</em>, <em>qCd‐8‐1</em>, and <em>qCd‐11‐1</em>, are distributed across seven chromosomes. Notably, the <em>qCd‐5‐1</em> and <em>qCd‐6‐1</em> loci are reported for the first time. We performed a detailed haplotype analysis of candidate genes related to heavy metal metabolism, specifically focusing on Cd accumulation. All SSSLs carrying alleles from donor parents exhibited a significant reduction in Cd accumulation, with additive effects ranging from −0.061 to −0.105. To further develop rice varieties with lower Cd accumulation in the grain, we developed six pyramided lines through crossing and marker-assisted selection. These pyramided lines showed significantly reduced Cd content in the grain compared to the elite <em>indica</em> recurrent parent, Huajingxian74 (HJX74). Importantly, most agronomic characteristics of the pyramided lines were similar to those of HJX74. In conclusion, this study demonstrates that identifying and pyramiding QTLs associated with reduced Cd accumulation is an effective strategy for developing rice varieties with lower Cd content in the grain.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100035"},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000256/pdfft?md5=61cdc6f2ccf2f2c4cb569ac619d06707&pid=1-s2.0-S2949952624000256-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141710560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-07-09DOI: 10.1016/j.ncrops.2024.100031
Mingliang Zhu, Min Liu, Zhicheng Dong
{"title":"Monitoring transcription by nascent RNA sequencing in crop plants","authors":"Mingliang Zhu, Min Liu, Zhicheng Dong","doi":"10.1016/j.ncrops.2024.100031","DOIUrl":"10.1016/j.ncrops.2024.100031","url":null,"abstract":"<div><p>Plants can quickly adapt to changing environments and external stimuli by undergoing a series of transcriptional responses. The process of maturing nascent RNA (direct product of transcription) into mRNA, which is crucial for the plant’s response to external factors, involves co-transcriptional and post-transcriptional processing. Although RNA-seq has greatly facilitated the study of plant transcriptomes by providing snapshots of stable RNA molecules, detecting the transcriptional dynamic changes and unstable transcripts remains challenging. In recent years, various sequencing methods have been developed to identify nascent RNA in eukaryotes, shedding light on the dynamics of transcriptional processing and uncovering unstable transcripts. At the same time, analysis of nascent RNA has provided valuable insights into transcriptional regulation in crops, highlighting differences in their features compared to model plants and potentially influencing breeding strategies. This review aims to explore the applications of different nascent RNA sequencing technologies in plants, focusing on significant findings achieved in crops.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100031"},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000219/pdfft?md5=20b6b5c18cbe7fe6112bb772cbe2ee73&pid=1-s2.0-S2949952624000219-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141710674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
New CropsPub Date : 2024-07-08DOI: 10.1016/j.ncrops.2024.100034
Jifu Li, Jing Tian, Min Zhou, Jiang Tian, Cuiyue Liang
{"title":"Research progress on the physiological and molecular mechanisms underlying soybean aluminum resistance","authors":"Jifu Li, Jing Tian, Min Zhou, Jiang Tian, Cuiyue Liang","doi":"10.1016/j.ncrops.2024.100034","DOIUrl":"10.1016/j.ncrops.2024.100034","url":null,"abstract":"<div><p>Aluminum (Al) toxicity is a global agricultural problem affecting crop growth and yield in acid soils. Approximately 35% of soybean (<em>Glycine max</em>) cultivation areas worldwide consist of acidic soils, making Al stress a major constraint for soybean production. The physiological and molecular mechanisms by which soybeans cope with Al toxicity have been extensively studied. This review focuses on recent research into the physiological, molecular, and genetic basis of soybean Al-resistance. It also summarizes our understandings of the regulatory mechanisms involved in soybean responses to Al toxicity.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100034"},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000244/pdfft?md5=5253bd1dcf0acf0b1abb9d53689b3e93&pid=1-s2.0-S2949952624000244-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}