{"title":"Meiosis in plants: From understanding to manipulation","authors":"Like Chen , Kejian Wang , Chun Wang","doi":"10.1016/j.ncrops.2024.100055","DOIUrl":null,"url":null,"abstract":"<div><div>Meiosis is an indispensable process in sexual reproduction, involving the recombination of genetic information and the production of haploid gamete cells through the segregation of sister chromatids. In crop breeding, elucidating the molecular mechanisms of meiosis is fundamental for manipulating recombination frequency and distribution, as well as for generating polyploid plants. In this review, we summarize current knowledge on the processes and genes involved in genetic recombination during Meiosis I, and the regulatory mechanisms of the second meiotic division during Meiosis II. Furthermore, we have outlined the breeding innovations achieved through the manipulation of meiosis, including the enhancement of genetic recombination frequency, alteration of recombination distribution, construction of artificial apomixis systems, and implementation of autopolyploid progressive heterosis (APH). This knowledge forms the cornerstone for further crop breeding applications, ultimately contributing to the optimization of crop yield and quality.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100055"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Meiosis is an indispensable process in sexual reproduction, involving the recombination of genetic information and the production of haploid gamete cells through the segregation of sister chromatids. In crop breeding, elucidating the molecular mechanisms of meiosis is fundamental for manipulating recombination frequency and distribution, as well as for generating polyploid plants. In this review, we summarize current knowledge on the processes and genes involved in genetic recombination during Meiosis I, and the regulatory mechanisms of the second meiotic division during Meiosis II. Furthermore, we have outlined the breeding innovations achieved through the manipulation of meiosis, including the enhancement of genetic recombination frequency, alteration of recombination distribution, construction of artificial apomixis systems, and implementation of autopolyploid progressive heterosis (APH). This knowledge forms the cornerstone for further crop breeding applications, ultimately contributing to the optimization of crop yield and quality.