Journal of Intelligent and Connected Vehicles最新文献

筛选
英文 中文
Critical Roles of Control Engineering in the Development of Intelligent and Connected Vehicles 控制工程在智能互联汽车开发中的关键作用
Journal of Intelligent and Connected Vehicles Pub Date : 2024-06-01 DOI: 10.26599/JICV.2023.9210040
Yang Fei;Peng Shi;Yang Liu;Liang Wang
{"title":"Critical Roles of Control Engineering in the Development of Intelligent and Connected Vehicles","authors":"Yang Fei;Peng Shi;Yang Liu;Liang Wang","doi":"10.26599/JICV.2023.9210040","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210040","url":null,"abstract":"In recent years, advancements in onboard computing hardware and wireless communication technology have remarkably stimulated the development of intelligent and connected vehicles (ICVs). Specifically, some researchers have investigated the issue of employing various advanced control techniques to optimize the performance of autonomous vehicles in practice (Sun et al., 2023; Zhang et al., 2023a, 2023b). Therefore, this article aims to discuss why and how control engineering plays an essential role in the development of ICVs.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 2","pages":"79-85"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Online Learning-Based Model Predictive Trajectory Control for Connected and Autonomous Vehicles: Modeling and Physical Tests 用于互联和自动驾驶车辆的基于在线学习的模型预测轨迹控制:建模与物理测试
Journal of Intelligent and Connected Vehicles Pub Date : 2024-06-01 DOI: 10.26599/JICV.2023.9210026
Qianwen Li;Peng Zhang;Handong Yao;Zhiwei Chen;Xiaopeng Li
{"title":"Online Learning-Based Model Predictive Trajectory Control for Connected and Autonomous Vehicles: Modeling and Physical Tests","authors":"Qianwen Li;Peng Zhang;Handong Yao;Zhiwei Chen;Xiaopeng Li","doi":"10.26599/JICV.2023.9210026","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210026","url":null,"abstract":"Motivated by the promising benefits of connected and autonomous vehicles (CAVs) in improving fuel efficiency, mitigating congestion, and enhancing safety, numerous theoretical models have been proposed to plan CAV multiple-step trajectories (time-specific speed/location trajectories) to accomplish various operations. However, limited efforts have been made to develop proper trajectory control techniques to regulate vehicle movements to follow multiple-step trajectories and test the performance of theoretical trajectory planning models with field experiments. Without an effective control method, the benefits of theoretical models for CAV trajectory planning can be difficult to harvest. This study proposes an online learning-based model predictive vehicle trajectory control structure to follow time-specific speed and location profiles. Unlike single-step controllers that are dominantly used in the literature, a multiple-step model predictive controller is adopted to control the vehicle's longitudinal movements for higher accuracy. The model predictive controller output (speed) cannot be interpreted by vehicles. A reinforcement learning agent is used to convert the speed value to the vehicle's direct control variable (i.e., throttle/brake). The reinforcement learning agent captures real-time changes in the operating environment. This is valuable in saving parameter calibration resources and improving trajectory control accuracy. A line tracking controller keeps vehicles on track. The proposed control structure is tested using reduced-scale robot cars. The adaptivity of the proposed control structure is demonstrated by changing the vehicle load. Then, experiments on two fundamental CAV platoon operations (i.e., platooning and split) show the effectiveness of the proposed trajectory control structure in regulating robot movements to follow time-specific reference trajectories.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 2","pages":"86-96"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586903","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roadside Cross-Camera Vehicle Tracking Combining Visual and Spatial-Temporal Information for a Cloud Control System 结合视觉和时空信息的路边跨摄像头车辆跟踪,用于云控制系统
Journal of Intelligent and Connected Vehicles Pub Date : 2024-06-01 DOI: 10.26599/JICV.2023.9210034
Bolin Gao;Zhuxin Li;Dong Zhang;Yanwei Liu;Jiaxing Chen;Ziyuan Lv
{"title":"Roadside Cross-Camera Vehicle Tracking Combining Visual and Spatial-Temporal Information for a Cloud Control System","authors":"Bolin Gao;Zhuxin Li;Dong Zhang;Yanwei Liu;Jiaxing Chen;Ziyuan Lv","doi":"10.26599/JICV.2023.9210034","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210034","url":null,"abstract":"Roadside cameras play a crucial role in road traffic, serving as an indispensable part of integrated vehicle-road-cloud systems due to their extensive visibility and monitoring capabilities. Nevertheless, these cameras face challenges in continuously tracking targets across perception domains. To address the issue of tracking vehicles across nonoverlapping perception domains between cameras, we propose a cross-camera vehicle tracking method within a Vehicle-Road-Cloud system that integrates visual and spatiotemporal information. A Gaussian model with microlevel traffic features is trained using vehicle information obtained through online tracking. Finally, the association of vehicle targets is achieved through the Gaussian model combining time and visual feature information. The experimental results indicate that the proposed system demonstrates excellent performance.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 2","pages":"129-137"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586907","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Public Perception of Connected and Automated Vehicles: Benefits, Concerns, and Barriers from an Australian Perspective 公众对互联和自动驾驶汽车的看法:从澳大利亚的视角看联网和自动驾驶汽车的好处、担忧和障碍
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-22 DOI: 10.26599/JICV.2023.9210028
Ali Matin;Hussein Dia
{"title":"Public Perception of Connected and Automated Vehicles: Benefits, Concerns, and Barriers from an Australian Perspective","authors":"Ali Matin;Hussein Dia","doi":"10.26599/JICV.2023.9210028","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210028","url":null,"abstract":"This study investigates the attitudes and concerns of the Australian public toward connected and autonomous vehicles (CAVs), and the factors influencing their willingness to adopt this technology. Through a comprehensive survey, a diverse group of respondents provided valuable insights toward various CAV scenarios such as riding in a vehicle with no driver, self-driving public transport, self-driving taxis, and heavy vehicles without drivers. The results highlight the significant impact of safety concerns about automated vehicles on individuals' attitudes across all scenarios. Higher levels of concern were associated with more negative attitudes, and a strong correlation between concerns and opposition underlines the necessity of addressing these apprehensions to build public trust and promote CAV adoption. Interestingly, nearly 70% of respondents felt uncomfortable driving next to a CAV, but they displayed more confidence in adopting automated public transport in the near future. Additionally, around 40% of participants indicated a strong willingness to purchase a CAV, primarily driven by the desire to reduce their carbon footprint and safety considerations. Notably, respondents with health conditions or disability exhibited heightened interest (almost double those without health conditions) in CAV technology. Gender differences emerged in attitudes and preferences toward CAVs, with women expressing a greater level of concern and perceiving higher barriers to CAV deployment. This emphasizes the importance of employing targeted approaches to address the specific concerns of different demographics. The study also underscores the role of trust in technology as a significant barrier to CAV deployment, ranking high among respondents' concerns. To overcome these challenges and facilitate successful CAV deployment, various strategies are suggested, including live demonstrations, dedicated routes for automated public transport, adoption incentives, and addressing liability concerns. The findings from this study offer valuable insights for government agencies, vehicle manufacturers, and stakeholders in promoting the successful implementation of CAVs. By understanding societal acceptance and addressing concerns, decision-makers can devise effective interventions and policies to ensure the safe and widespread adoption of CAVs in Australia. Moreover, vehicle manufacturers can leverage these results to consider design aspects that align with passenger preferences, thereby facilitating the broader acceptance and adoption of CAVs in the future. Finally, this research provides a significant contribution to the understanding of public perception and acceptance of CAVs in the Australian context. By guiding decision-making and informing strategies, the study lays the foundation for a safer and more effective integration of CAVs into the country's transportation landscape.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 2","pages":"108-128"},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10537112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethical Decision-Making in Older Drivers During Critical Driving Situations: An Online Experiment 老年驾驶员在危急驾驶情况下的道德决策:在线实验
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210031
Amandeep Singh;Sarah Yahoodik;Yovela Murzello;Samuel Petkac;Yusuke Yamani;Siby Samuel
{"title":"Ethical Decision-Making in Older Drivers During Critical Driving Situations: An Online Experiment","authors":"Amandeep Singh;Sarah Yahoodik;Yovela Murzello;Samuel Petkac;Yusuke Yamani;Siby Samuel","doi":"10.26599/JICV.2023.9210031","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210031","url":null,"abstract":"The present study examined the impact of aging on ethical decision-making in simulated critical driving scenarios. 204 participants from North America, grouped into two age groups (18–30 years and 65 years and above), were asked to decide whether their simulated automated vehicle should stay in or change from the current lane in scenarios mimicking the Trolley Problem. Each participant viewed a video clip rendered by the driving simulator at Old Dominion University and pressed the space-bar if they decided to intervene in the control of the simulated automated vehicle in an online experiment. Bayesian hierarchical models were used to analyze participants' responses, response time, and acceptability of utilitarian ethical decision-making. The results showed significant pedestrian placement, age, and time-to-collision (TTC) effects on participants' ethical decisions. When pedestrians were in the right lane, participants were more likely to switch lanes, indicating a utilitarian approach prioritizing pedestrian safety. Younger participants were more likely to switch lanes in general compared to older participants. The results imply that older drivers can maintain their ability to respond to ethically fraught scenarios with their tendency to switch lanes more frequently than younger counterparts, even when the tasks interacting with an automated driving system. The current findings may inform the development of decision algorithms for intelligent and connected vehicles by considering potential ethical dilemmas faced by human drivers across different age groups.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"30-37"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506787","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Vehicle Detection Methods Based on Computer Vision 基于计算机视觉的车辆检测方法综述
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210019
Changxi Ma;Fansong Xue
{"title":"A Review of Vehicle Detection Methods Based on Computer Vision","authors":"Changxi Ma;Fansong Xue","doi":"10.26599/JICV.2023.9210019","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210019","url":null,"abstract":"With the increasing number of vehicles, there has been an unprecedented pressure on the operation and maintenance of intelligent transportation systems and transportation infrastructure. In order to achieve faster and more accurate identification of traffic vehicles, computer vision and deep learning technology play a vital role and have made significant advancements. This study summarizes the current research status, latest findings, and future development trends of traditional detection algorithms and deep learning-based detection algorithms. Among the detection algorithms based on deep learning, this study focuses on the representative convolutional neural network models. Specifically, it examines the two-stage and one-stage detection algorithms, which have been extensively utilized in the field of intelligent transportation systems. Compared to traditional detection algorithms, deep learning-based detection algorithms can achieve higher accuracy and efficiency. The single-stage detection algorithm is more efficient for real-time detection, while the two-stage detection algorithm is more accurate than the single-stage detection algorithm. In the follow-up research, it is important to consider the balance between detection efficiency and detection accuracy. Additionally, vehicle missed detection and false detection in complex scenes, such as bad weather and vehicle overlap, should be taken into account. This will ensure better application of the research findings in engineering practice.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Speed Control for Electric Vehicles on Dynamic Wireless Charging Lanes: An Eco-Driving Approach 电动汽车在动态无线充电车道上的优化速度控制:生态驾驶方法
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210033
Lingshu Zhong;Ho Sheau En;Mingyang Pei;Jingwen Xiong;Tao Wang
{"title":"Optimized Speed Control for Electric Vehicles on Dynamic Wireless Charging Lanes: An Eco-Driving Approach","authors":"Lingshu Zhong;Ho Sheau En;Mingyang Pei;Jingwen Xiong;Tao Wang","doi":"10.26599/JICV.2023.9210033","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210033","url":null,"abstract":"As the adoption of Electric Vehicles (EVs) intensifies, two primary challenges emerge: limited range due to battery constraints and extended charging times. The traditional charging stations, particularly those near highways, exacerbate these issues with necessary detours, inconsistent service levels, and unpredictable waiting durations. The emerging technology of dynamic wireless charging lanes (DWCLs) may alleviate range anxiety and eliminate long charging stops; however, the driving speed on DWCL significantly affects charging efficiency and effective charging time. Meanwhile, the existing research has addressed load balancing optimization on Dynamic Wireless Charging (DWC) systems to a limited extent. To address this critical issue, this study introduces an innovative eco-driving speed control strategy, providing a novel solution to the multi-objective optimization problem of speed control on DWCL. We utilize mathematical programming methods and incorporate the longitudinal dynamics of vehicles to provide an accurate physical model of EVs. Three objective functions are formulated to tackle the challenges at hand: reducing travel time, increasing charging efficiency, and achieving load balancing on DWCL, which corresponds to four control strategies. The results of numerical tests indicate that a comprehensive control strategy, which considers all objectives, achieves a minor sacrifice in travel time reduction while significantly improving energy efficiency and load balancing. Furthermore, by defining the energy demand and speed range through an upper operation limit, a relatively superior speed control strategy can be selected. This work contributes to the discourse on DWCL integration into modern transportation systems, enhancing the EV driving experience on major roads.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"52-63"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collaborative Multi-Lane on-Ramp Merging Strategy for Connected and Automated Vehicles Using Dynamic Conflict Graph 利用动态冲突图为互联车辆和自动驾驶车辆制定多车道匝道并线策略
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210032
Jia Shi;Yugong Luo;Pengfei Li;Jiawei Wang;Keqiang Li
{"title":"Collaborative Multi-Lane on-Ramp Merging Strategy for Connected and Automated Vehicles Using Dynamic Conflict Graph","authors":"Jia Shi;Yugong Luo;Pengfei Li;Jiawei Wang;Keqiang Li","doi":"10.26599/JICV.2023.9210032","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210032","url":null,"abstract":"The on-ramp merging in multi-lane highway scenarios presents challenges due to the complexity of coordinating vehicles' merging and lane-changing behaviors, while ensuring safety and optimizing traffic flow. However, there are few studies that have addressed the merging problem of ramp vehicles and the cooperative lane-change problem of mainline vehicles within a unified framework and proposed corresponding optimization strategies. To tackle this issue, this study adopts a cyber-physical integration perspective and proposes a graph-based solution approach. First, the information of vehicle groups in the physical plane is mapped to the cyber plane, and a dynamic conflict graph is introduced in the cyber space to describe the conflict relationships among vehicle groups. Subsequently, graph decomposition and search strategies are employed to obtain the optimal solution, including the set of mainline vehicles changing lanes, passing sequences for each route, and corresponding trajectories. Finally, the proposed dynamic conflict graph-based algorithm is validated through simulations in continuous traffic with various densities, and its performance is compared with the default algorithm in SUMO. The results demonstrate the effectiveness of the proposed approach in improving vehicle safety and traffic efficiency, particularly in high traffic density scenarios, providing valuable insights for future research in multi-lane merging strategies.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"38-51"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Safety and Efficiency in Automated Container Terminals: Route Planning for Hazardous Material AGV Using LSTM Neural Network and Deep Q-Network 提高自动化集装箱码头的安全和效率:使用 LSTM 神经网络和深度 Q 网络为危险品 AGV 制定路线规划
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210041
Fei Li;Junchi Cheng;Zhiqi Mao;Yuhao Wang;Pingfa Feng
{"title":"Enhancing Safety and Efficiency in Automated Container Terminals: Route Planning for Hazardous Material AGV Using LSTM Neural Network and Deep Q-Network","authors":"Fei Li;Junchi Cheng;Zhiqi Mao;Yuhao Wang;Pingfa Feng","doi":"10.26599/JICV.2023.9210041","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210041","url":null,"abstract":"As the proliferation and development of automated container terminal continue, the issues of efficiency and safety become increasingly significant. The container yard is one of the most crucial cargo distribution centers in a terminal. Automated Guided Vehicles (AGVs) that carry materials of varying hazard levels through these yards without compromising on the safe transportation of hazardous materials, while also maximizing efficiency, is a complex challenge. This research introduces an algorithm that integrates Long Short-Term Memory (LSTM) neural network with reinforcement learning techniques, specifically Deep Q-Network (DQN), for routing an AGV carrying hazardous materials within a container yard. The objective is to ensure that the AGV carrying hazardous materials efficiently reaches its destination while effectively avoiding AGVs carrying non-hazardous materials. Utilizing real data from the Meishan Port in Ningbo, Zhejiang, China, the actual yard is first abstracted into an undirected graph. Since LSTM neural network can efficiently conveys and represents information in long time sequences and do not causes useful information before long time to be ignored, a two-layer LSTM neural network with 64 neurons per layer was constructed for predicting the motion trajectory of AGVs carrying non-hazardous materials, which are incorporated into the map as background AGVs. Subsequently, DQN is employed to plan the route for an AGV transporting hazardous materials, aiming to reach its destination swiftly while avoiding encounters with other AGVs. Experimental tests have shown that the route planning algorithm proposed in this study improves the level of avoidance of hazardous material AGV in relation to non-hazardous material AGVs. Compared to the method where hazardous material AGV follow the shortest path to their destination, the avoidance efficiency was enhanced by 3.11%. This improvement demonstrates potential strategies for balancing efficiency and safety in automated terminals. Additionally, it provides insights for designing avoidance schemes for autonomous driving AGVs, offering solutions for complex operational environments where safety and efficient navigation are paramount.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"64-77"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Decision-Making Method for Vehicles in Emergency Conditions Based on Artificial Potential Fields and Finite State Machines 基于人工势场和有限状态机的紧急状况下车辆智能决策方法
Journal of Intelligent and Connected Vehicles Pub Date : 2024-03-01 DOI: 10.26599/JICV.2023.9210025
Xunjia Zheng;Huilan Li;Qiang Zhang;Yonggang Liu;Xing Chen;Hui Liu;Tianhong Luo;Jianjie Gao;Lihong Xia
{"title":"Intelligent Decision-Making Method for Vehicles in Emergency Conditions Based on Artificial Potential Fields and Finite State Machines","authors":"Xunjia Zheng;Huilan Li;Qiang Zhang;Yonggang Liu;Xing Chen;Hui Liu;Tianhong Luo;Jianjie Gao;Lihong Xia","doi":"10.26599/JICV.2023.9210025","DOIUrl":"https://doi.org/10.26599/JICV.2023.9210025","url":null,"abstract":"This study aims to propose a decision-making method based on artificial potential fields (APFs) and finite state machines (FSMs) in emergency conditions. This study presents a decision-making method based on APFs and FSMs for emergency conditions. By modeling the longitudinal and lateral potential energy fields of the vehicle, the driving state is identified, and the trigger conditions are provided for path planning during lane changing. In addition, this study also designed the state transition rules based on the longitudinal and lateral virtual forces. It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations. To illustrate the performance of the decision-making model by considering APFs and finite state machines. The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals. The contributions of this study are two-fold. A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios. Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model, leading to the formulation of transition rules between different states of autonomous vehicles (AVs).","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 1","pages":"19-29"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信