基于 MBSE 的城市道路交叉口 CPS 架构设计

Chen Wang;Xiaoping Ma;Limin Jia;Zheng Lai;Zhexuan Yang;Han Yan;Jing Zhao
{"title":"基于 MBSE 的城市道路交叉口 CPS 架构设计","authors":"Chen Wang;Xiaoping Ma;Limin Jia;Zheng Lai;Zhexuan Yang;Han Yan;Jing Zhao","doi":"10.26599/JICV.2023.9210030","DOIUrl":null,"url":null,"abstract":"With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals' travel experience. Urban intersections are one of the primary sources of traffic congestion, and these bottlenecks have a negative impact not only on traffic efficacy but also on the surrounding road traffic in the region. To alleviate urban traffic congestion, cyber-physical systems have been widely implemented in the transportation industry, allowing for the perception, analysis, calculation, and dispatching of urban traffic flow, as well as making urban transportation safe, efficient, and quick. As the system scale and functions increase, system design has become increasingly complex, necessitating a deeper comprehension of the system's structure and interaction relationships to construct a stable and reliable system. Therefore, this study proposes a method for designing cyber-physical systems for urban traffic intersections based on Model-Based Systems Engineering (MBSE). This method models and analyses exhaustively the system's requirements, functions, and logical architecture using System Modeling Language (SysML). After the architecture design has been completed, an architecture verification and optimization method based on Failure Mode and Effect Analysis (FMEA) for urban road intersection cyber-physical systems is utilized to analyze the architecture's reliability by analyzing the failure modes of activities and to optimize the system architecture to improve the design's efficiency and reliability.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 3","pages":"190-204"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695165","citationCount":"0","resultStr":"{\"title\":\"CPS Architecture Design for Urban Roadway Intersections Based on MBSE\",\"authors\":\"Chen Wang;Xiaoping Ma;Limin Jia;Zheng Lai;Zhexuan Yang;Han Yan;Jing Zhao\",\"doi\":\"10.26599/JICV.2023.9210030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals' travel experience. Urban intersections are one of the primary sources of traffic congestion, and these bottlenecks have a negative impact not only on traffic efficacy but also on the surrounding road traffic in the region. To alleviate urban traffic congestion, cyber-physical systems have been widely implemented in the transportation industry, allowing for the perception, analysis, calculation, and dispatching of urban traffic flow, as well as making urban transportation safe, efficient, and quick. As the system scale and functions increase, system design has become increasingly complex, necessitating a deeper comprehension of the system's structure and interaction relationships to construct a stable and reliable system. Therefore, this study proposes a method for designing cyber-physical systems for urban traffic intersections based on Model-Based Systems Engineering (MBSE). This method models and analyses exhaustively the system's requirements, functions, and logical architecture using System Modeling Language (SysML). After the architecture design has been completed, an architecture verification and optimization method based on Failure Mode and Effect Analysis (FMEA) for urban road intersection cyber-physical systems is utilized to analyze the architecture's reliability by analyzing the failure modes of activities and to optimize the system architecture to improve the design's efficiency and reliability.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"7 3\",\"pages\":\"190-204\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10695165\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695165/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10695165/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着城市化的快速发展和交通需求的日益增长,城市交通拥堵已成为个人出行体验的障碍。城市交叉路口是交通拥堵的主要来源之一,这些瓶颈不仅会对交通效率产生负面影响,还会影响区域内的周边道路交通。为缓解城市交通拥堵,网络物理系统在交通行业得到了广泛应用,实现了对城市交通流量的感知、分析、计算和调度,并使城市交通变得安全、高效和快捷。随着系统规模和功能的扩大,系统设计也变得越来越复杂,需要深入理解系统的结构和交互关系,才能构建稳定可靠的系统。因此,本研究提出了一种基于模型的系统工程(MBSE)的城市交通交叉口网络物理系统设计方法。该方法使用系统建模语言(SysML)对系统的需求、功能和逻辑架构进行建模和详尽分析。在完成架构设计后,利用基于失效模式和影响分析(FMEA)的城市道路交叉口网络物理系统架构验证和优化方法,通过分析活动的失效模式来分析架构的可靠性,并优化系统架构以提高设计的效率和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CPS Architecture Design for Urban Roadway Intersections Based on MBSE
With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals' travel experience. Urban intersections are one of the primary sources of traffic congestion, and these bottlenecks have a negative impact not only on traffic efficacy but also on the surrounding road traffic in the region. To alleviate urban traffic congestion, cyber-physical systems have been widely implemented in the transportation industry, allowing for the perception, analysis, calculation, and dispatching of urban traffic flow, as well as making urban transportation safe, efficient, and quick. As the system scale and functions increase, system design has become increasingly complex, necessitating a deeper comprehension of the system's structure and interaction relationships to construct a stable and reliable system. Therefore, this study proposes a method for designing cyber-physical systems for urban traffic intersections based on Model-Based Systems Engineering (MBSE). This method models and analyses exhaustively the system's requirements, functions, and logical architecture using System Modeling Language (SysML). After the architecture design has been completed, an architecture verification and optimization method based on Failure Mode and Effect Analysis (FMEA) for urban road intersection cyber-physical systems is utilized to analyze the architecture's reliability by analyzing the failure modes of activities and to optimize the system architecture to improve the design's efficiency and reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信