{"title":"Front and back cover","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 2","pages":"c1-c4"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999400/09999401.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67841839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lateral stability regulation of intelligent electric vehicle based on model predictive control","authors":"Cong Li;Yun Feng Xie;Gang Wang;Xian Feng Zeng;Hui Jing","doi":"10.1108/JICV-03-2021-0005","DOIUrl":"https://doi.org/10.1108/JICV-03-2021-0005","url":null,"abstract":"Purpose - This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm. Design/methodology/approach - Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle's sideslip angle within a safety range. Findings - The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions. Originality/value - The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle's sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle's lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 3","pages":"104-114"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999393/09999397.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68029007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copyright page","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 3","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999393/09999395.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67864466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active lane management for intelligent connected vehicles in weaving areas of urban expressway","authors":"Haijian Li;Junjie Zhang;Zihan Zhang;Zhufei Huang","doi":"10.1108/JICV-08-2020-0009","DOIUrl":"https://doi.org/10.1108/JICV-08-2020-0009","url":null,"abstract":"Purpose - This paper aims to use active fine lane management methods to solve the problem of congestion in a weaving area and provide theoretical and technical support for traffic control under the environment of intelligent connected vehicles (ICVs) in the future. Design/methodology/approach - By analyzing the traffic capacities and traffic behaviors of domestic and foreign weaving areas and combining them with field investigation, the paper proposes the active and fine lane management methods for ICVs to optimal driving behavior in a weaving area. The VISSIM simulation of traffic flow vehicle driving behavior in weaving areas of urban expressways was performed using research data. The influence of lane-changing in advance on the weaving area was evaluated and a conflict avoidance area was established in the weaving area. The active fine lane management methods applied to a weaving area were verified for different scenarios. Findings - The results of the study indicate that ICVs complete their lane changes before they reach a weaving area, their time in the weaving area does not exceed the specified time and the delay of vehicles that pass through the weaving area decreases. Originality/value - Based on the vehicle group behavior, this paper conducts a simulation study on the active traffic management control-oriented to ICVs. The research results can optimize the management of lanes, improve the traffic capacity of a weaving area and mitigate traffic congestion on expressways.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 2","pages":"52-67"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999400/09999404.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67840998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ecological control strategy for cooperative autonomous vehicle in mixed traffic considering linear stability","authors":"Chaoru Lu;Chenhui Liu","doi":"10.1108/JICV-08-2021-0012","DOIUrl":"https://doi.org/10.1108/JICV-08-2021-0012","url":null,"abstract":"Purpose - This paper aims to present a cooperative adaptive cruise control, called stable smart driving model (SSDM), for connected and autonomous vehicles (CAVs) in mixed traffic streams with human-driven vehicles. Design/methodology/approach - Considering the linear stability, SSDM is able to provide smooth deceleration and acceleration in the vehicle platoons with or without cut-in. Besides, the calibrated Virginia tech microscopic energy and emission model is applied in this study to investigate the impact of CAVs on the fuel consumption of the vehicle platoon and traffic flows. Under the cut-in condition, the SSDM outperforms ecological SDM and SDM in terms of stability considering different desired time headways. Moreover, single-lane vehicle dynamics are simulated for humandriven vehicles and CAVs. Findings - The result shows that CAVs can reduce platoon-level fuel consumption. SSDM can save the platoon-level fuel consumption up to 15%, outperforming other existing control strategies. Considering the single-lane highway with merging, the higher market penetration of SSDM- equipped CAVs leads to less fuel consumption. Originality/value - The proposed rule-based control method considered linear stability to generate smoother deceleration and acceleration curves. The research results can help to develop environmental-friendly control strategies and lay the foundation for the new methods.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 3","pages":"115-124"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999393/09999398.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67864468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of gender and personality characteristics on the speed tendency based on advanced driving assistance system (ADAS) evaluation","authors":"Cunshu Pan;Jin Xu;Jinghou Fu","doi":"10.1108/JICV-04-2020-0003","DOIUrl":"https://doi.org/10.1108/JICV-04-2020-0003","url":null,"abstract":"Purpose - This study aims to explore the relationship between speed behavior of participants and driving styles on interchange ramps. A spiral interchange in Chongqing was selected as an experimental road to carry out field driving experiment. Design/methodology/approach - The continuous operating speed during experiment was selected by Mobile Eye, and the driving style was selected via two inventories. Findings - Different driving behaviors showed great differences in age, driving mileage and driving experience. During driving process, male pursued driving stimulation more, whereas female pursued driving steadiness more. Therefore, driving characteristics of male were more disadvantageous to driving safety than that of female. Except for the large speed difference at the entrance and exit of the ramps, the differences at other positions were small. And the operating speed of male was slightly higher than that of female. The difference between different genders at the ascending end position achieved 4–5 kph, and the difference at other feature points were mostly 1–2 kph. During driving process, risky participants were more likely to pursue driving stimulation, and the poor speed control behavior was reflected in wide range of desired operating speed. Based on the results of analyzing at feature points, melancholy and sanguine participants more tended to take a high operating speed, and the poor speed control behavior was reflected in the most widely desired speed range. The speed control behavior of mixed participants was more cautious. Originality/value - Advanced driving assistance system combined with two inventories was used to explore difference of speed behavior.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 1","pages":"28-37"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999387/09999392.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67872591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qun Lim;Yi Lim;Hafiz Muhammad;Dylan Wei Ming Tan;U-Xuan Tan
{"title":"Forward collision warning system for motorcyclist using smart phone sensors based on time-to-collision and trajectory prediction","authors":"Qun Lim;Yi Lim;Hafiz Muhammad;Dylan Wei Ming Tan;U-Xuan Tan","doi":"10.1108/JICV-11-2020-0014","DOIUrl":"https://doi.org/10.1108/JICV-11-2020-0014","url":null,"abstract":"Purpose - The purpose of this paper is to develop a proof-of-concept (POC) Forward Collision Warning (FWC) system for the motorcyclist, which determines a potential clash based on time-to-collision and trajectory of both the detected and ego vehicle (motorcycle). Design/methodology/approach - This comes in three approaches. First, time-to-collision value is to be calculated based on low-cost camera video input. Second, the trajectory of the detected vehicle is predicted based on video data in the 2 D pixel coordinate. Third, the trajectory of the ego vehicle is predicted via the lean direction of the motorcycle from a low-cost inertial measurement unit sensor. Findings - This encompasses a comprehensive Advanced FWC system which is an amalgamation of the three approaches mentioned above. First, to predict time-to-collision, nested Kalman filter and vehicle detection is used to convert image pixel matrix to relative distance, velocity and time-to-collision data. Next, for trajectory prediction of detected vehicles, a few algorithms were compared, and it was found that long short-term memory performs the best on the data set. The last finding is that to determine the leaning direction of the ego vehicle, it is better to use lean angle measurement compared to riding pattern classification. Originality/value - The value of this paper is that it provides a POC FWC system that considers time-to-collision and trajectory of both detected and ego vehicle (motorcycle).","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 3","pages":"93-103"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999393/09999396.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68029008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic prediction of traffic incident duration on urban expressways: A deep learning approach based on LSTM and MLP","authors":"Weiwei Zhu;Jinglin Wu;Ting Fu;Junhua Wang;Jie Zhang;Qiangqiang Shangguan","doi":"10.1108/JICV-03-2021-0004","DOIUrl":"https://doi.org/10.1108/JICV-03-2021-0004","url":null,"abstract":"Purpose - Efficient traffic incident management is needed to alleviate the negative impact of traffic incidents. Accurate and reliable estimation of traffic incident duration is of great importance for traffic incident management. Previous studies have proposed models for traffic incident duration prediction; however, most of these studies focus on the total duration and could not update prediction results in real-time. From a traveler's perspective, the relevant factor is the residual duration of the impact of the traffic incident. Besides, few (if any) studies have used dynamic traffic flow parameters in the prediction models. This paper aims to propose a framework to fill these gaps. Design/methodology/approach - This paper proposes a framework based on the multi-layer perception (MLP) and long short-term memory (LSTM) model. The proposed methodology integrates traffic incident-related factors and real-time traffic flow parameters to predict the residual traffic incident duration. To validate the effectiveness of the framework, traffic incident data and traffic flow data from Shanghai Zhonghuan Expressway are used for modeling training and testing. Findings - Results show that the model with 30-min time window and taking both traffic volume and speed as inputs performed best. The area under the curve values exceed 0.85 and the prediction accuracies exceed 0.75. These indicators demonstrated that the model is appropriate for this study context. The model provides new insights into traffic incident duration prediction. Research limitations/implications - The incident samples applied by this study might not be enough and the variables are not abundant. The number of injuries and casualties, more detailed description of the incident location and other variables are expected to be used to characterize the traffic incident comprehensively. The framework needs to be further validated through a sufficiently large number of variables and locations. Practical implications - The framework can help reduce the impacts of incidents on the safety of efficiency of road traffic once implemented in intelligent transport system and traffic management systems in future practical applications. Originality/value - This study uses two artificial neural network methods, MLP and LSTM, to establish a framework aiming at providing accurate and time-efficient information on traffic incident duration in the future for transportation operators and travelers. This study will contribute to the deployment of emergency management and urban traffic navigation planning.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 2","pages":"80-91"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999400/09999406.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67840997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Copyright page","authors":"","doi":"","DOIUrl":"https://doi.org/","url":null,"abstract":"","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 2","pages":"1-1"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999400/09999402.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67841000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling commercial vehicle drivers' acceptance of advanced driving assistance system (ADAS)","authors":"Yueru Xu;Zhirui Ye;Chao Wang","doi":"10.1108/JICV-07-2021-0011","DOIUrl":"https://doi.org/10.1108/JICV-07-2021-0011","url":null,"abstract":"Purpose - Advanced driving assistance system (ADAS) has been applied in commercial vehicles. This paper aims to evaluate the influence factors of commercial vehicle drivers' acceptance on ADAS and explore the characteristics of each key factors. Two most widely used functions, forward collision warning (FCW) and lane departure warning (LDW), were considered in this paper. Design/methodology/approach - A random forests algorithm was applied to evaluate the influence factors of commercial drivers' acceptance. ADAS data of 24 commercial vehicles were recorded from 1 November to 21 December 2018, in Jiangsu province. Respond or not was set as dependent variables, while six influence factors were considered. Findings - The acceptance rate for FCW and LDW systems was 69.52% and 38.76%, respectively. The accuracy of random forests model for FCW and LDW systems is 0.816 and 0.820, respectively. For FCW system, vehicle speed, duration time and warning hour are three key factors. Drivers prefer to respond in a short duration during daytime and low vehicle speed. While for LDW system, duration time, vehicle speed and driver age are three key factors. Older drivers have higher respond probability under higher vehicle speed, and the respond time is longer than FCW system. Originality/value - Few research studies have focused on the attitudes of commercial vehicle drivers, though commercial vehicle accidents were proved to be more severe than passenger vehicles. The results of this study can help researchers to better understand the behavior of commercial vehicle drivers and make corresponding recommendations for ADAS of commercial vehicles.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"4 3","pages":"125-135"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9944931/9999393/09999399.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67864467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}