{"title":"通过眼球跟踪对自动驾驶汽车进行分段信任评估","authors":"Miklós Lukovics;Szabolcs Prónay;Barbara Nagy","doi":"10.26599/JICV.2023.9210037","DOIUrl":null,"url":null,"abstract":"Previous studies have identified trust as one of the key factors in the technology acceptance of autonomous vehicles. As these studies mostly investigated the population in general, little is known about segment-specific differences. Furthermore, the widely used survey methods are less able to capture the deeper forms of trust—which neuroscientific methods are much better suited to capture. The main objective of our research is to study trust as one of the key factors of technology acceptance related to autonomous vehicles by using neuroscientific methods for specific consumer segments. Real-time eye-tracking tests were applied to a sample of 113 participants, combined with a posttest self-report. The tests were carried out under laboratory conditions during which our subjects watched videos recorded with the internal cameras of autonomous vehicles. Based on the fixation count, total fixation duration, and pupil dilation, we empirically verified that the trust level of all five identified segments is relatively low, while the trust level of the “traditional rejecting” segment is the lowest. An increase in trust level can be shown if the subjects receive extra information about the journey. Another important finding is that the self-reported trust level is not always congruent with the eye-tracking analysis results; therefore, combined approaches can lead to greater measurement validity.","PeriodicalId":100793,"journal":{"name":"Journal of Intelligent and Connected Vehicles","volume":"7 2","pages":"151-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586910","citationCount":"0","resultStr":"{\"title\":\"Segmented Trust Assessment in Autonomous Vehicles via Eye-Tracking\",\"authors\":\"Miklós Lukovics;Szabolcs Prónay;Barbara Nagy\",\"doi\":\"10.26599/JICV.2023.9210037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have identified trust as one of the key factors in the technology acceptance of autonomous vehicles. As these studies mostly investigated the population in general, little is known about segment-specific differences. Furthermore, the widely used survey methods are less able to capture the deeper forms of trust—which neuroscientific methods are much better suited to capture. The main objective of our research is to study trust as one of the key factors of technology acceptance related to autonomous vehicles by using neuroscientific methods for specific consumer segments. Real-time eye-tracking tests were applied to a sample of 113 participants, combined with a posttest self-report. The tests were carried out under laboratory conditions during which our subjects watched videos recorded with the internal cameras of autonomous vehicles. Based on the fixation count, total fixation duration, and pupil dilation, we empirically verified that the trust level of all five identified segments is relatively low, while the trust level of the “traditional rejecting” segment is the lowest. An increase in trust level can be shown if the subjects receive extra information about the journey. Another important finding is that the self-reported trust level is not always congruent with the eye-tracking analysis results; therefore, combined approaches can lead to greater measurement validity.\",\"PeriodicalId\":100793,\"journal\":{\"name\":\"Journal of Intelligent and Connected Vehicles\",\"volume\":\"7 2\",\"pages\":\"151-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586910\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent and Connected Vehicles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10586910/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent and Connected Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10586910/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmented Trust Assessment in Autonomous Vehicles via Eye-Tracking
Previous studies have identified trust as one of the key factors in the technology acceptance of autonomous vehicles. As these studies mostly investigated the population in general, little is known about segment-specific differences. Furthermore, the widely used survey methods are less able to capture the deeper forms of trust—which neuroscientific methods are much better suited to capture. The main objective of our research is to study trust as one of the key factors of technology acceptance related to autonomous vehicles by using neuroscientific methods for specific consumer segments. Real-time eye-tracking tests were applied to a sample of 113 participants, combined with a posttest self-report. The tests were carried out under laboratory conditions during which our subjects watched videos recorded with the internal cameras of autonomous vehicles. Based on the fixation count, total fixation duration, and pupil dilation, we empirically verified that the trust level of all five identified segments is relatively low, while the trust level of the “traditional rejecting” segment is the lowest. An increase in trust level can be shown if the subjects receive extra information about the journey. Another important finding is that the self-reported trust level is not always congruent with the eye-tracking analysis results; therefore, combined approaches can lead to greater measurement validity.