{"title":"Extrapolating the mean-values of multiplicative functions","authors":"P.D.T.A. Elliott","doi":"10.1016/1385-7258(89)90004-8","DOIUrl":"10.1016/1385-7258(89)90004-8","url":null,"abstract":"<div><p>It is shown that certain commonly occurring conditions may be factored out of sums of multiplicative arithmetic functions.</p><p>A function is <em>arithmetic</em> if it is defined on the positive integers. Those complex-valued arithmetic functions g which satisfy the relation <em>g</em>(<em>ab</em>) = <em>g</em>(<em>a</em>)<em>g</em>(<em>b</em>) for all coprime pairs of positive integers a, b are here called <em>multiplicative</em>. In this paper <em>g</em> will be a multiplicative function which satisfies |<em>g</em>(<em>n</em>)| ≤ 1 for all positive integers <em>n</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 409-420"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90004-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"93777321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-dual normal bases","authors":"Eva Bayer-Fluckiger","doi":"10.1016/1385-7258(89)90002-4","DOIUrl":"https://doi.org/10.1016/1385-7258(89)90002-4","url":null,"abstract":"<div><p>Every Galois extension of odd degree has a self-dual normal basis.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 379-383"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90002-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92121409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Point spectra of Cesàro matrices","authors":"I.J. Maddox","doi":"10.1016/1385-7258(89)90009-7","DOIUrl":"10.1016/1385-7258(89)90009-7","url":null,"abstract":"<div><p>For all positive a the point spectrum of the (<em>C</em>, α) matrix is determined, where the matrix is regarded as an operator on certain Banach sequence spaces. In particular the point spectrum is obtained in the spaces <em>I</em><sub><em>p</em></sub>(<em>X</em>), with 1<<em>p</em>≤∞, where <em>X</em> is a Banach space.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 465-470"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90009-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"99062947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the number of points determining a canonical curve","authors":"Jan Stevens","doi":"10.1016/1385-7258(89)90012-7","DOIUrl":"10.1016/1385-7258(89)90012-7","url":null,"abstract":"<div><p>We show that through <em>g</em> + 5 general points of <span><math><mtext>P</mtext></math></span><sup><em>g</em>−1</sup> passes a canonical curve of genus g. For low, odd values of g one may assign more points (<em>g</em>+5+[6/<em>g</em>−2]). The proof is based on a study of the normal bundle of <em>g</em>-cuspidal rational curves.</p><p>These facts have consequences for the smoothability of the curve singularity consisting of r lines through the origin of <em>k</em><sup><em>n</em></sup>, <em>n</em><<em>r</em>≤(<sub>2</sub><sup><em>n</em>+1</sup>), in generic position. We strengthen some results of Pinkham and Greuel on such curves.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 485-494"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90012-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"108808336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The normal part of an unbounded operator","authors":"Jan Stochel, F.H. Szafraniec","doi":"10.1016/1385-7258(89)90013-9","DOIUrl":"10.1016/1385-7258(89)90013-9","url":null,"abstract":"","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 495-503"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90013-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"99107832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Clebsch-Gordan coefficients for the quantum group SμU(2) and q-Hahn polynomials","authors":"H.T. Koelink , T.H. Koornwinder","doi":"10.1016/1385-7258(89)90007-3","DOIUrl":"10.1016/1385-7258(89)90007-3","url":null,"abstract":"<div><p>The tensor product of two unitary irreducible representations of the quantum group <em>S</em><sub><em>μ</em></sub><em>U</em>(2) is decomposed in a direct sum of unitary irreducible representations with explicit realizations. The Clebsch-Gordan coefficients yield the orthogonality relations for <em>q</em>-Hahn and dual <em>q</em>-Hahn polynomials.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 443-456"},"PeriodicalIF":0.0,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90007-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"106579550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}