Extrapolating the mean-values of multiplicative functions

P.D.T.A. Elliott
{"title":"Extrapolating the mean-values of multiplicative functions","authors":"P.D.T.A. Elliott","doi":"10.1016/1385-7258(89)90004-8","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that certain commonly occurring conditions may be factored out of sums of multiplicative arithmetic functions.</p><p>A function is <em>arithmetic</em> if it is defined on the positive integers. Those complex-valued arithmetic functions g which satisfy the relation <em>g</em>(<em>ab</em>) = <em>g</em>(<em>a</em>)<em>g</em>(<em>b</em>) for all coprime pairs of positive integers a, b are here called <em>multiplicative</em>. In this paper <em>g</em> will be a multiplicative function which satisfies |<em>g</em>(<em>n</em>)| ≤ 1 for all positive integers <em>n</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 4","pages":"Pages 409-420"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1385-7258(89)90004-8","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1385725889900048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

It is shown that certain commonly occurring conditions may be factored out of sums of multiplicative arithmetic functions.

A function is arithmetic if it is defined on the positive integers. Those complex-valued arithmetic functions g which satisfy the relation g(ab) = g(a)g(b) for all coprime pairs of positive integers a, b are here called multiplicative. In this paper g will be a multiplicative function which satisfies |g(n)| ≤ 1 for all positive integers n.

外推乘法函数的均值
证明了某些常见的条件可以从乘法算术函数的和中分解出来。如果一个函数定义在正整数上,那么它就是算术函数。对于正整数a, b的所有素数对,满足关系g(ab) = g(a)g(b)的复值算术函数g在这里称为乘法函数。在本文中,g是一个对所有正整数n满足|g(n)|≤1的乘法函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信