IEEE Transactions on Quantum Engineering最新文献

筛选
英文 中文
Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation 用于小分子生成的混合量子循环生成对抗网络
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-13 DOI: 10.1109/TQE.2024.3414264
Matvei Anoshin;Asel Sagingalieva;Christopher Mansell;Dmitry Zhiganov;Vishal Shete;Markus Pflitsch;Alexey Melnikov
{"title":"Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation","authors":"Matvei Anoshin;Asel Sagingalieva;Christopher Mansell;Dmitry Zhiganov;Vishal Shete;Markus Pflitsch;Alexey Melnikov","doi":"10.1109/TQE.2024.3414264","DOIUrl":"https://doi.org/10.1109/TQE.2024.3414264","url":null,"abstract":"The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during training. Through extensive experimentation on benchmark drug design datasets, quantum machine 9 (QM9) and PubChemQC 9 (PC9), the introduced models are shown to outperform the previously achieved scores. Most prominently, the new scores indicate an increase of up to 30% in the quantitative estimation of druglikeness. The new hybrid quantum machine learning algorithms, as well as the achieved scores of pharmacokinetic properties, contribute to the development of fast and accurate drug discovery processes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10556803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach 具有 1 位前/后编码分辨率的 MIMO:量子退火方法
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-11 DOI: 10.1109/TQE.2024.3412165
Ioannis Krikidis
{"title":"MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach","authors":"Ioannis Krikidis","doi":"10.1109/TQE.2024.3412165","DOIUrl":"10.1109/TQE.2024.3412165","url":null,"abstract":"In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), an iterative QA-based algorithm is proposed that achieves near-optimal performance with polynomial complexity. The algorithm is associated with a rigorous mathematical framework that casts the pre/postcoding vector design to appropriate real-valued quadratic unconstrained binary optimization (QUBO) problems. Experimental results in a state-of-the-art D-WAVE QA device validate the efficiency of the proposed algorithm. To further improve the efficiency of the D-WAVE quantum device, a new preprocessing technique, which preserves the quadratic QUBO matrix from the detrimental effects of the Hamiltonian noise through nonlinear companding, is proposed. The proposed preprocessing technique significantly improves the quality of the D-WAVE solutions as well as the occurrence probability of the optimal solution.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10553303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FASQuiC: Flexible Architecture for Scalable Spin Qubit Control FASQuiC:可扩展自旋库比特控制的灵活架构
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-05 DOI: 10.1109/TQE.2024.3409811
Mathieu Toubeix;Eric Guthmuller;Adrian Evans;Antoine Faurie;Tristan Meunier
{"title":"FASQuiC: Flexible Architecture for Scalable Spin Qubit Control","authors":"Mathieu Toubeix;Eric Guthmuller;Adrian Evans;Antoine Faurie;Tristan Meunier","doi":"10.1109/TQE.2024.3409811","DOIUrl":"https://doi.org/10.1109/TQE.2024.3409811","url":null,"abstract":"As scaling becomes a key issue for large-scale quantum computing, hardware control systems will become increasingly costly in resources. This article presents a compact direct digital synthesis architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy and the number of synchronized channels. The architecture can produce programmable combinations of ramps, frequency combs, and arbitrary waveform generation (AWG) at 5 GS/s, with a worst-case digital feedback latency of 76.8 ns. The field-programmable gate array (FPGA)-based system is highly configurable and takes advantage of bitstream switching to achieve the high flexibility required for scalable calibration. The architecture also provides GHz rate, multiplexed, in-phase and quadrature component, single-side band modulation for scalable reflectometry. This architecture has been validated in hardware on a Xilinx ZCU111 FPGA demonstrating the mixing of complex signals and the quality of the frequency comb generation for multiplexed control and measurement. The key benefits of this design are the increase of controllability of ramps at the digital-to-analog converter (DAC) frequency and the reduction in memory requirements by several orders of magnitude compared with existing AWG-based architectures. The hardware for a single channel is very compact, 2% of ZCU111 logic resources for one DAC lane in the default configuration, leaving significant circuit resources for integrated feedback, calibration, and quantum error correction.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549805","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributionally Robust Variational Quantum Algorithms With Shifted Noise 具有偏移噪声的分布稳健变分量子算法
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-04 DOI: 10.1109/TQE.2024.3409309
Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang
{"title":"Distributionally Robust Variational Quantum Algorithms With Shifted Noise","authors":"Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang","doi":"10.1109/TQE.2024.3409309","DOIUrl":"https://doi.org/10.1109/TQE.2024.3409309","url":null,"abstract":"Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as a random variable with an unknown probability density function (PDF), and we assume that the PDF may shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under shifted noise. We regard this work as the first step toward improving the reliability of VQAs influenced by shifted noise from the parameter optimization perspective.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Shuttle Strategies for Parallel QCCD Architectures 并行 QCCD 架构的先进穿梭策略
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-03 DOI: 10.1109/TQE.2024.3408757
Weining Dai;Kevin A. Brown;Thomas G. Robertazzi
{"title":"Advanced Shuttle Strategies for Parallel QCCD Architectures","authors":"Weining Dai;Kevin A. Brown;Thomas G. Robertazzi","doi":"10.1109/TQE.2024.3408757","DOIUrl":"https://doi.org/10.1109/TQE.2024.3408757","url":null,"abstract":"Trapped ions (TIs) are at the forefront of quantum computing implementation, offering unparalleled coherence, fidelity, and connectivity. However, the scalability of TI systems is hampered by the limited capacity of individual ion traps, necessitating intricate ion shuttling for advanced computational tasks. The quantum charge-coupled device (QCCD) framework has emerged as a promising solution, facilitating ion mobility for universal quantum computation. Current QCCD architectures predominantly feature a linear topology, which is increasingly recognized as inefficient for complex quantum operations. Anticipating the shift toward more efficacious designs, this article introduces an innovative quantum scheduling strategy optimized for parallel QCCD topologies. Our strategy proposes a probabilistic formula for ion movement, alongside ingenious methods for local layer generation and layer compression, yielding a significant reduction in ion shuttle times. Through simulations, we demonstrate that our strategy not only substantially outstrips the linear model but also exhibits better performance over other parallel strategies that employ greedy algorithms. This is achieved through our nuanced resolution of complexities, such as traffic blocks and trap capacity limitations. The consequent reduction in shuttle operations leads to lower energy consumption and an enhancement in the quantum computer's fidelity, ultimately accelerating program execution times.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10546265","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141474918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies With Higher Order Formulations 加速格罗弗自适应搜索:采用更高阶公式的 Qubit 和门数减少策略
IEEE Transactions on Quantum Engineering Pub Date : 2024-04-25 DOI: 10.1109/TQE.2024.3393437
Yuki Sano;Kosuke Mitarai;Naoki Yamamoto;Naoki Ishikawa
{"title":"Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies With Higher Order Formulations","authors":"Yuki Sano;Kosuke Mitarai;Naoki Yamamoto;Naoki Ishikawa","doi":"10.1109/TQE.2024.3393437","DOIUrl":"https://doi.org/10.1109/TQE.2024.3393437","url":null,"abstract":"Grover adaptive search (GAS) is a quantum exhaustive search algorithm designed to solve binary optimization problems. In this article, we propose higher order binary formulations that can simultaneously reduce the numbers of qubits and gates required for GAS. Specifically, we consider two novel strategies: one that reduces the number of gates through polynomial factorization, and the other that halves the order of the objective function, subsequently decreasing circuit runtime and implementation cost. Our analysis demonstrates that the proposed higher order formulations improve the convergence performance of GAS by reducing both the search space size and the number of quantum gates. Our strategies are also beneficial for general combinatorial optimization problems using one-hot encoding.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational Estimation of Optimal Signal States for Quantum Channels 量子信道最佳信号状态的变量估计
IEEE Transactions on Quantum Engineering Pub Date : 2024-04-25 DOI: 10.1109/TQE.2024.3393416
Leonardo Oleynik;Junaid Ur Rehman;Hayder Al-Hraishawi;Symeon Chatzinotas
{"title":"Variational Estimation of Optimal Signal States for Quantum Channels","authors":"Leonardo Oleynik;Junaid Ur Rehman;Hayder Al-Hraishawi;Symeon Chatzinotas","doi":"10.1109/TQE.2024.3393416","DOIUrl":"https://doi.org/10.1109/TQE.2024.3393416","url":null,"abstract":"This article explores the performance of quantum communication systems in the presence of noise and focuses on finding the optimal encoding for maximizing the classical communication rate, approaching the classical capacity in some scenarios. Instead of theoretically bounding the ultimate capacity of the channel, we adopt a signal processing perspective to estimate the achievable performance of a physically available but otherwise unknown quantum channel. By employing a variational algorithm to estimate the trace distance between quantum states, we numerically determine the optimal encoding protocol for the amplitude damping and Pauli channels. Our simulations demonstrate the convergence and accuracy of the method with a few iterations, confirming that optimal conditions for binary quantum communication systems can be variationally determined with minimal computation. Furthermore, since the channel knowledge is not required at the transmitter or at the receiver, these results can be employed in arbitrary quantum communication systems, including satellite-based communication systems, a particularly relevant platform for the quantum Internet.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparative Study on Solving Optimization Problems With Exponentially Fewer Qubits 用指数级减少的 Qubits 解决优化问题的比较研究
IEEE Transactions on Quantum Engineering Pub Date : 2024-04-23 DOI: 10.1109/TQE.2024.3392834
David Winderl;Nicola Franco;Jeanette Miriam Lorenz
{"title":"A Comparative Study on Solving Optimization Problems With Exponentially Fewer Qubits","authors":"David Winderl;Nicola Franco;Jeanette Miriam Lorenz","doi":"10.1109/TQE.2024.3392834","DOIUrl":"https://doi.org/10.1109/TQE.2024.3392834","url":null,"abstract":"Variational quantum optimization algorithms, such as the variational quantum eigensolver (VQE) or the quantum approximate optimization algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on the VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding the problem into the variational ansatz and propose a classical optimization procedure to find the ground state of the ansatz in fewer iterations with a better or similar objective. In addition, we propose a method to embed the linear interpolation of the MaxCut problem on a quantum device. Furthermore, we compare classical optimizers for this variational ansatz on quadratic unconstrained binary optimization and graph partitioning problems.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing Quantum Telecloning on Superconducting Quantum Processors 在超导量子处理器上探测量子远程克隆
IEEE Transactions on Quantum Engineering Pub Date : 2024-04-19 DOI: 10.1109/TQE.2024.3391654
Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer
{"title":"Probing Quantum Telecloning on Superconducting Quantum Processors","authors":"Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer","doi":"10.1109/TQE.2024.3391654","DOIUrl":"https://doi.org/10.1109/TQE.2024.3391654","url":null,"abstract":"Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal \u0000<inline-formula><tex-math>$1 rightarrow M$</tex-math></inline-formula>\u0000 telecloning circuits and experimentally demonstrate these quantum telecloning circuits for \u0000<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\u0000 up to \u0000<inline-formula><tex-math>$M=10$</tex-math></inline-formula>\u0000, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for \u0000<inline-formula><tex-math>$M=2, 3$</tex-math></inline-formula>\u0000, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for \u0000<inline-formula><tex-math>$M &gt; 5$</tex-math></inline-formula>\u0000, but for \u0000<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\u0000, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140948912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiobjective Optimization and Network Routing With Near-Term Quantum Computers 利用近端量子计算机进行多目标优化和网络路由选择
IEEE Transactions on Quantum Engineering Pub Date : 2024-04-16 DOI: 10.1109/TQE.2024.3386753
Shao-Hen Chiew;Kilian Poirier;Rajesh Mishra;Ulrike Bornheimer;Ewan Munro;Si Han Foon;Christopher Wanru Chen;Wei Sheng Lim;Chee Wei Nga
{"title":"Multiobjective Optimization and Network Routing With Near-Term Quantum Computers","authors":"Shao-Hen Chiew;Kilian Poirier;Rajesh Mishra;Ulrike Bornheimer;Ewan Munro;Si Han Foon;Christopher Wanru Chen;Wei Sheng Lim;Chee Wei Nga","doi":"10.1109/TQE.2024.3386753","DOIUrl":"https://doi.org/10.1109/TQE.2024.3386753","url":null,"abstract":"Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multiobjective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve multiobjective combinatorial optimization problems. We study the application of this scheme to the network routing problem in detail, by first mapping it to the multiobjective shortest-path problem. Focusing on an implementation based on the quantum approximate optimization algorithm (QAOA)—the go-to approach for tackling optimization problems on near-term quantum computers—we examine the Pareto plot that results from the scheme and qualitatively analyze its ability to produce Pareto-optimal solutions. We further provide theoretical and numerical scaling analyses of the resource requirements and performance of QAOA and identify key challenges associated with this approach. Finally, through Amazon Braket, we execute small-scale implementations of our scheme on the IonQ Harmony 11-qubit quantum computer.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10502334","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信