针对二次二元优化问题的定点格罗弗自适应搜索

Ákos Nagy;Jaime Park;Cindy Zhang;Atithi Acharya;Alex Khan
{"title":"针对二次二元优化问题的定点格罗弗自适应搜索","authors":"Ákos Nagy;Jaime Park;Cindy Zhang;Atithi Acharya;Alex Khan","doi":"10.1109/TQE.2024.3484650","DOIUrl":null,"url":null,"abstract":"In this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n-dimensional QUBO problem with \n<inline-formula><tex-math>$m$</tex-math></inline-formula>\n nonzero terms, we construct a marker oracle for such problems with a tunable parameter, \n<inline-formula><tex-math>$\\Lambda \\in [ 1, m ] \\cap \\mathbb {Z}$</tex-math></inline-formula>\n. At \n<inline-formula><tex-math>$d \\in \\mathbb {Z}_+$</tex-math></inline-formula>\n precision, the oracle uses \n<inline-formula><tex-math>$O (n + \\Lambda d)$</tex-math></inline-formula>\n qubits and has total depth of \n<inline-formula><tex-math>$O (\\frac{m}{\\Lambda } \\log _{2} (n) + \\log _{2} (d))$</tex-math></inline-formula>\n and a non-Clifford depth of \n<inline-formula><tex-math>$O (\\frac{m}{\\Lambda })$</tex-math></inline-formula>\n. Moreover, each qubit is required to be connected to at most \n<inline-formula><tex-math>$O (\\log _{2} (\\Lambda + d))$</tex-math></inline-formula>\n other qubits. In the case of a maximum graph cuts, as \n<inline-formula><tex-math>$d = 2 \\left\\lceil \\log _{2} (n) \\right\\rceil$</tex-math></inline-formula>\n always suffices, the depth of the marker oracle can be made as shallow as \n<inline-formula><tex-math>$O (\\log _{2} (n))$</tex-math></inline-formula>\n. For all values of \n<inline-formula><tex-math>$\\Lambda$</tex-math></inline-formula>\n, the non-Clifford gate count of these oracles is strictly lower (at least by a factor of \n<inline-formula><tex-math>$\\sim 2$</tex-math></inline-formula>\n) than previous constructions. Furthermore, we introduce a novel fixed-point Grover adaptive search for QUBO problems, using our oracle design and a hybrid fixed-point Grover search, motivated by the works of Boyer et al. (1988) and Li et al. (2019). This method has better performance guarantees than previous Grover adaptive search methods. Some of our results are novel and useful for any method based on the fixed-point Grover search. Finally, we give a heuristic argument that, with high probability and in \n<inline-formula><tex-math>$O (\\frac{\\log _{2} (n)}{\\sqrt{\\epsilon }})$</tex-math></inline-formula>\n time, this adaptive method finds a configuration that is among the best \n<inline-formula><tex-math>$\\epsilon 2^{n}$</tex-math></inline-formula>\n ones.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726869","citationCount":"0","resultStr":"{\"title\":\"Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems\",\"authors\":\"Ákos Nagy;Jaime Park;Cindy Zhang;Atithi Acharya;Alex Khan\",\"doi\":\"10.1109/TQE.2024.3484650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an \\n<inline-formula><tex-math>$n$</tex-math></inline-formula>\\n-dimensional QUBO problem with \\n<inline-formula><tex-math>$m$</tex-math></inline-formula>\\n nonzero terms, we construct a marker oracle for such problems with a tunable parameter, \\n<inline-formula><tex-math>$\\\\Lambda \\\\in [ 1, m ] \\\\cap \\\\mathbb {Z}$</tex-math></inline-formula>\\n. At \\n<inline-formula><tex-math>$d \\\\in \\\\mathbb {Z}_+$</tex-math></inline-formula>\\n precision, the oracle uses \\n<inline-formula><tex-math>$O (n + \\\\Lambda d)$</tex-math></inline-formula>\\n qubits and has total depth of \\n<inline-formula><tex-math>$O (\\\\frac{m}{\\\\Lambda } \\\\log _{2} (n) + \\\\log _{2} (d))$</tex-math></inline-formula>\\n and a non-Clifford depth of \\n<inline-formula><tex-math>$O (\\\\frac{m}{\\\\Lambda })$</tex-math></inline-formula>\\n. Moreover, each qubit is required to be connected to at most \\n<inline-formula><tex-math>$O (\\\\log _{2} (\\\\Lambda + d))$</tex-math></inline-formula>\\n other qubits. In the case of a maximum graph cuts, as \\n<inline-formula><tex-math>$d = 2 \\\\left\\\\lceil \\\\log _{2} (n) \\\\right\\\\rceil$</tex-math></inline-formula>\\n always suffices, the depth of the marker oracle can be made as shallow as \\n<inline-formula><tex-math>$O (\\\\log _{2} (n))$</tex-math></inline-formula>\\n. For all values of \\n<inline-formula><tex-math>$\\\\Lambda$</tex-math></inline-formula>\\n, the non-Clifford gate count of these oracles is strictly lower (at least by a factor of \\n<inline-formula><tex-math>$\\\\sim 2$</tex-math></inline-formula>\\n) than previous constructions. Furthermore, we introduce a novel fixed-point Grover adaptive search for QUBO problems, using our oracle design and a hybrid fixed-point Grover search, motivated by the works of Boyer et al. (1988) and Li et al. (2019). This method has better performance guarantees than previous Grover adaptive search methods. Some of our results are novel and useful for any method based on the fixed-point Grover search. Finally, we give a heuristic argument that, with high probability and in \\n<inline-formula><tex-math>$O (\\\\frac{\\\\log _{2} (n)}{\\\\sqrt{\\\\epsilon }})$</tex-math></inline-formula>\\n time, this adaptive method finds a configuration that is among the best \\n<inline-formula><tex-math>$\\\\epsilon 2^{n}$</tex-math></inline-formula>\\n ones.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726869\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726869/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10726869/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种针对二次无约束二元优化(QUBO)问题的 Grover 型方法。对于一个具有 $m$ 非零项的 $n$ 维 QUBO 问题,我们构建了一个用于此类问题的标记神谕,它具有一个可调参数,即 $\Lambda \in [ 1, m ] \cap \mathbb {Z}$。在 $d \in \mathbb {Z}_+$ 精度下,神谕使用 $O (n + \Lambda d)$ 量子比特,总深度为 $O (\frac{m}\{Lambda })\log _{2} (n) + \log _{2} (d))$,非克里福德深度为 $O (\frac{m}{\Lambda })$。此外,要求每个量子比特最多与 $O (\log _{2} (\Lambda + d))$ 其他量子比特相连。在最大图切割的情况下,由于 $d = 2 \left\lceil \log _{2} (n) \right\rceil$ 总是足够的,标记甲骨文的深度可以做得很浅,只要 $O (\log _{2} (n))$。对于所有的 $\Lambda$ 值,这些神谕的非克里福德门计数都严格低于之前的构造(至少是 $\sim 2$ 的系数)。此外,受 Boyer 等人(1988 年)和 Li 等人(2019 年)著作的启发,我们介绍了一种针对 QUBO 问题的新型定点格罗弗自适应搜索,它使用了我们的神谕设计和混合定点格罗弗搜索。与之前的格罗弗自适应搜索方法相比,这种方法具有更好的性能保证。我们的一些结果很新颖,对任何基于定点格罗弗搜索的方法都很有用。最后,我们给出了一个启发式论证,即在 $O (\frac\{log _{2} (n)}{\sqrt{epsilon }})$时间内,这种自适应方法可以高概率地找到最佳 $\epsilon 2^{n}$ 配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Point Grover Adaptive Search for Quadratic Binary Optimization Problems
In this article, we study a Grover-type method for quadratic unconstrained binary optimization (QUBO) problems. For an $n$ -dimensional QUBO problem with $m$ nonzero terms, we construct a marker oracle for such problems with a tunable parameter, $\Lambda \in [ 1, m ] \cap \mathbb {Z}$ . At $d \in \mathbb {Z}_+$ precision, the oracle uses $O (n + \Lambda d)$ qubits and has total depth of $O (\frac{m}{\Lambda } \log _{2} (n) + \log _{2} (d))$ and a non-Clifford depth of $O (\frac{m}{\Lambda })$ . Moreover, each qubit is required to be connected to at most $O (\log _{2} (\Lambda + d))$ other qubits. In the case of a maximum graph cuts, as $d = 2 \left\lceil \log _{2} (n) \right\rceil$ always suffices, the depth of the marker oracle can be made as shallow as $O (\log _{2} (n))$ . For all values of $\Lambda$ , the non-Clifford gate count of these oracles is strictly lower (at least by a factor of $\sim 2$ ) than previous constructions. Furthermore, we introduce a novel fixed-point Grover adaptive search for QUBO problems, using our oracle design and a hybrid fixed-point Grover search, motivated by the works of Boyer et al. (1988) and Li et al. (2019). This method has better performance guarantees than previous Grover adaptive search methods. Some of our results are novel and useful for any method based on the fixed-point Grover search. Finally, we give a heuristic argument that, with high probability and in $O (\frac{\log _{2} (n)}{\sqrt{\epsilon }})$ time, this adaptive method finds a configuration that is among the best $\epsilon 2^{n}$ ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信