IEEE Transactions on Quantum Engineering最新文献

筛选
英文 中文
Energy Risk Analysis With Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling 利用动态振幅估计和片断近似量子编译进行能量风险分析
IEEE Transactions on Quantum Engineering Pub Date : 2024-07-10 DOI: 10.1109/TQE.2024.3425969
Kumar Ghosh;Kavitha Yogaraj;Gabriele Agliardi;Piergiacomo Sabino;Marina Fernández-Campoamor;Juan Bernabé-Moreno;Giorgio Cortiana;Omar Shehab;Corey O'Meara
{"title":"Energy Risk Analysis With Dynamic Amplitude Estimation and Piecewise Approximate Quantum Compiling","authors":"Kumar Ghosh;Kavitha Yogaraj;Gabriele Agliardi;Piergiacomo Sabino;Marina Fernández-Campoamor;Juan Bernabé-Moreno;Giorgio Cortiana;Omar Shehab;Corey O'Meara","doi":"10.1109/TQE.2024.3425969","DOIUrl":"https://doi.org/10.1109/TQE.2024.3425969","url":null,"abstract":"In this article, we generalize the approximate quantum compiling algorithm into a new method for \u0000<sc>cnot</small>\u0000-depth reduction, which is apt to process wide target quantum circuits. Combining this method with state-of-the-art techniques for error mitigation and circuit compiling, we present a ten-qubit experimental demonstration of iterative amplitude estimation on a quantum computer. The target application is a derivation of the expected value of contract portfolios in the energy industry. In parallel, we also introduce a new variant of the quantum amplitude estimation algorithm, which we call dynamic amplitude estimation, as it is based on the dynamic circuit capability of quantum devices. The algorithm achieves a reduction in the circuit width in the order of the binary precision compared to the typical implementation of quantum amplitude estimation, while simultaneously decreasing the number of quantum–classical iterations (again in the order of the binary precision) compared to the iterative amplitude estimation. The calculation of the expected value, value at risk, and conditional value at risk of contract portfolios on quantum hardware provides a proof of principle of the new algorithm.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10592808","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate Solutions of Combinatorial Problems via Quantum Relaxations 通过量子松弛近似解决组合问题
IEEE Transactions on Quantum Engineering Pub Date : 2024-07-04 DOI: 10.1109/TQE.2024.3421294
Bryce Fuller;Charles Hadfield;Jennifer R. Glick;Takashi Imamichi;Toshinari Itoko;Richard J. Thompson;Yang Jiao;Marna M. Kagele;Adriana W. Blom-Schieber;Rudy Raymond;Antonio Mezzacapo
{"title":"Approximate Solutions of Combinatorial Problems via Quantum Relaxations","authors":"Bryce Fuller;Charles Hadfield;Jennifer R. Glick;Takashi Imamichi;Toshinari Itoko;Richard J. Thompson;Yang Jiao;Marna M. Kagele;Adriana W. Blom-Schieber;Rudy Raymond;Antonio Mezzacapo","doi":"10.1109/TQE.2024.3421294","DOIUrl":"https://doi.org/10.1109/TQE.2024.3421294","url":null,"abstract":"Combinatorial problems are formulated to find optimal designs within a fixed set of constraints and are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization remains an ongoing area of study. Here, we propose new methods for producing approximate solutions to quadratic unconstrained binary optimization problems, which are based on relaxations to local quantum Hamiltonians. We look specifically at approximating solutions for the maximum cut problem and its weighted version. These relaxations are defined through commutative maps, which in turn are constructed borrowing ideas from quantum random access codes. We establish relations between the spectra of the relaxed Hamiltonians and optimal cuts of the original problems, via two quantum rounding protocols. The first one is based on projections to random magic states. It produces average cuts that approximate the optimal one by a factor of least 0.555 or 0.625, depending on the relaxation chosen, if given access to a quantum state with energy between the optimal classical cut and the maximal relaxed energy. The second rounding protocol is deterministic and is based on the estimation of Pauli observables. The proposed quantum relaxations inherit memory compression from quantum random access codes, which allowed us to test the performances of the methods presented for 3-regular random graphs and a design problem motivated by industry for sizes up to 40 nodes, on superconducting quantum processors.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10586788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional Neural Decoder for Surface Codes 用于表面代码的卷积神经解码器
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-27 DOI: 10.1109/TQE.2024.3419773
Hyunwoo Jung;Inayat Ali;Jeongseok Ha
{"title":"Convolutional Neural Decoder for Surface Codes","authors":"Hyunwoo Jung;Inayat Ali;Jeongseok Ha","doi":"10.1109/TQE.2024.3419773","DOIUrl":"https://doi.org/10.1109/TQE.2024.3419773","url":null,"abstract":"To perform reliable information processing in quantum computers, quantum error correction (QEC) codes are essential for the detection and correction of errors in the qubits. Among QEC codes, topological QEC codes are designed to interact between the neighboring qubits, which is a promising property for easing the implementation requirements. In addition, the locality to the qubits provides unusual tolerance to local errors. Recently, various decoding algorithms based on machine learning have been proposed to improve the decoding performance and latency of QEC codes. In this work, we propose a new decoding algorithm for surface codes, i.e., a type of topological codes, by using convolutional neural networks (CNNs) tailored for the topological lattice structure of the surface codes. In particular, the proposed algorithm takes advantage of the syndrome pattern, which is represented as a part of a rectangular lattice given to the CNN as its input. The remaining part of the rectangular lattice is filled with a carefully selected incoherent value for better logical error rate performance. In addition, we introduce how to optimize the hyperparameters in the CNN, according to the lattice structure of a given surface code. This reduces the overall decoding complexity and makes the CNN-based decoder computationally more suitable for implementation. The numerical results show that the proposed decoding algorithm effectively improves the decoding performance in terms of logical error rate as compared to the existing algorithms on various quantum error models.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10574322","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Quantum Natural Policy Gradients 论量子自然政策梯度
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-24 DOI: 10.1109/TQE.2024.3418094
André Sequeira;Luis Paulo Santos;Luis Soares Barbosa
{"title":"On Quantum Natural Policy Gradients","authors":"André Sequeira;Luis Paulo Santos;Luis Soares Barbosa","doi":"10.1109/TQE.2024.3418094","DOIUrl":"https://doi.org/10.1109/TQE.2024.3418094","url":null,"abstract":"This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, is less clear. Through a detailed analysis of Löwner inequalities between quantum and classical FIMs, this study uncovers the nuanced distinctions and implications of using each type of FIM. Our results indicate that a PQC-based agent using the quantum FIM without additional insights typically incurs a larger approximation error and does not guarantee improved performance compared to the classical FIM. Empirical evaluations in classic control benchmarks suggest even though quantum FIM preconditioning outperforms standard gradient ascent, in general, it is not superior to classical FIM preconditioning.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10569042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting Through-Substrate Vias on Sapphire Substrates for Quantum Circuits 用于量子电路的蓝宝石衬底超导通孔
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-20 DOI: 10.1109/TQE.2024.3416963
Kiyotaka Mukasa;Yusuke Nuruki;Hayato Kubo;Yoshihide Narahara;Motohiro Umehara;Kazuyuki Fujie
{"title":"Superconducting Through-Substrate Vias on Sapphire Substrates for Quantum Circuits","authors":"Kiyotaka Mukasa;Yusuke Nuruki;Hayato Kubo;Yoshihide Narahara;Motohiro Umehara;Kazuyuki Fujie","doi":"10.1109/TQE.2024.3416963","DOIUrl":"https://doi.org/10.1109/TQE.2024.3416963","url":null,"abstract":"Sapphire substrates have recently been recognized for their potential to improve the coherence time of superconducting qubits. However, due to challenges in via fabrication, silicon substrates have been predominantly used for qubits. In this study, we fabricated vias on sapphire substrates using lasers and deposited TiN films by chemical vapor deposition. Cross-sectional views of the via confirmed uniform thickness of the TiN film along the via wall. In addition, the TiN film exhibited a superconducting transition at 4.5 K, demonstrating the successful deposition of a high-quality homogeneous superconducting film. This represents the first example of realizing superconducting through-substrate vias on sapphire substrates, a crucial first step toward achieving the 3-D integration of qubits while maintaining coherence time.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors 优化大型色心量子处理器的电气接口
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-19 DOI: 10.1109/TQE.2024.3416836
Luc Enthoven;Masoud Babaie;Fabio Sebastiano
{"title":"Optimizing the Electrical Interface for Large-Scale Color-Center Quantum Processors","authors":"Luc Enthoven;Masoud Babaie;Fabio Sebastiano","doi":"10.1109/TQE.2024.3416836","DOIUrl":"https://doi.org/10.1109/TQE.2024.3416836","url":null,"abstract":"Quantum processors based on color centers in diamond are promising candidates for future large-scale quantum computers thanks to their flexible optical interface, (relatively) high operating temperature, and high-fidelity operation. Similar to other quantum computing platforms, the electrical interface required to control and read out such qubits may limit both the performance of the whole system and its scalability. To address this challenge, this work analyzes the requirements of the electrical interface and investigates how to efficiently implement the electronic controller in a scalable architecture comprising a large number of identical unit cells. Among the different discussed functionalities, a specific focus is devoted to the generation of the static and dynamic magnetic fields driving the electron and nuclear spins, because of their major impact on fidelity and scalability. Following the derived requirements, different system architectures, such as a qubit frequency-multiplexing scheme, are considered to identify the most power efficient approach, especially in the presence of inhomogeneity of the qubit Larmor frequency across the processor. As a result, a non-frequency-multiplexed 1-\u0000<inline-formula><tex-math>$,mathrm{m}mathrm{m}^{2}$</tex-math></inline-formula>\u0000 unit-cell architecture is proposed as the optimal solution, able to address up to one electron-spin qubit and nine nuclear-spin qubits within a 3-mW average power consumption, thus establishing the baseline for the scalable electrical interface for future large-scale color-center quantum computers.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10564136","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation 用于小分子生成的混合量子循环生成对抗网络
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-13 DOI: 10.1109/TQE.2024.3414264
Matvei Anoshin;Asel Sagingalieva;Christopher Mansell;Dmitry Zhiganov;Vishal Shete;Markus Pflitsch;Alexey Melnikov
{"title":"Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation","authors":"Matvei Anoshin;Asel Sagingalieva;Christopher Mansell;Dmitry Zhiganov;Vishal Shete;Markus Pflitsch;Alexey Melnikov","doi":"10.1109/TQE.2024.3414264","DOIUrl":"https://doi.org/10.1109/TQE.2024.3414264","url":null,"abstract":"The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during training. Through extensive experimentation on benchmark drug design datasets, quantum machine 9 (QM9) and PubChemQC 9 (PC9), the introduced models are shown to outperform the previously achieved scores. Most prominently, the new scores indicate an increase of up to 30% in the quantitative estimation of druglikeness. The new hybrid quantum machine learning algorithms, as well as the achieved scores of pharmacokinetic properties, contribute to the development of fast and accurate drug discovery processes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10556803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach 具有 1 位前/后编码分辨率的 MIMO:量子退火方法
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-11 DOI: 10.1109/TQE.2024.3412165
Ioannis Krikidis
{"title":"MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach","authors":"Ioannis Krikidis","doi":"10.1109/TQE.2024.3412165","DOIUrl":"10.1109/TQE.2024.3412165","url":null,"abstract":"In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), an iterative QA-based algorithm is proposed that achieves near-optimal performance with polynomial complexity. The algorithm is associated with a rigorous mathematical framework that casts the pre/postcoding vector design to appropriate real-valued quadratic unconstrained binary optimization (QUBO) problems. Experimental results in a state-of-the-art D-WAVE QA device validate the efficiency of the proposed algorithm. To further improve the efficiency of the D-WAVE quantum device, a new preprocessing technique, which preserves the quadratic QUBO matrix from the detrimental effects of the Hamiltonian noise through nonlinear companding, is proposed. The proposed preprocessing technique significantly improves the quality of the D-WAVE solutions as well as the occurrence probability of the optimal solution.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10553303","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FASQuiC: Flexible Architecture for Scalable Spin Qubit Control FASQuiC:可扩展自旋库比特控制的灵活架构
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-05 DOI: 10.1109/TQE.2024.3409811
Mathieu Toubeix;Eric Guthmuller;Adrian Evans;Antoine Faurie;Tristan Meunier
{"title":"FASQuiC: Flexible Architecture for Scalable Spin Qubit Control","authors":"Mathieu Toubeix;Eric Guthmuller;Adrian Evans;Antoine Faurie;Tristan Meunier","doi":"10.1109/TQE.2024.3409811","DOIUrl":"https://doi.org/10.1109/TQE.2024.3409811","url":null,"abstract":"As scaling becomes a key issue for large-scale quantum computing, hardware control systems will become increasingly costly in resources. This article presents a compact direct digital synthesis architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy and the number of synchronized channels. The architecture can produce programmable combinations of ramps, frequency combs, and arbitrary waveform generation (AWG) at 5 GS/s, with a worst-case digital feedback latency of 76.8 ns. The field-programmable gate array (FPGA)-based system is highly configurable and takes advantage of bitstream switching to achieve the high flexibility required for scalable calibration. The architecture also provides GHz rate, multiplexed, in-phase and quadrature component, single-side band modulation for scalable reflectometry. This architecture has been validated in hardware on a Xilinx ZCU111 FPGA demonstrating the mixing of complex signals and the quality of the frequency comb generation for multiplexed control and measurement. The key benefits of this design are the increase of controllability of ramps at the digital-to-analog converter (DAC) frequency and the reduction in memory requirements by several orders of magnitude compared with existing AWG-based architectures. The hardware for a single channel is very compact, 2% of ZCU111 logic resources for one DAC lane in the default configuration, leaving significant circuit resources for integrated feedback, calibration, and quantum error correction.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549805","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributionally Robust Variational Quantum Algorithms With Shifted Noise 具有偏移噪声的分布稳健变分量子算法
IEEE Transactions on Quantum Engineering Pub Date : 2024-06-04 DOI: 10.1109/TQE.2024.3409309
Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang
{"title":"Distributionally Robust Variational Quantum Algorithms With Shifted Noise","authors":"Zichang He;Bo Peng;Yuri Alexeev;Zheng Zhang","doi":"10.1109/TQE.2024.3409309","DOIUrl":"https://doi.org/10.1109/TQE.2024.3409309","url":null,"abstract":"Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as a random variable with an unknown probability density function (PDF), and we assume that the PDF may shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under shifted noise. We regard this work as the first step toward improving the reliability of VQAs influenced by shifted noise from the parameter optimization perspective.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547365","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信