Benchmarking Quantum Circuit Transformation With QKNOB Circuits

Sanjiang Li;Xiangzhen Zhou;Yuan Feng
{"title":"Benchmarking Quantum Circuit Transformation With QKNOB Circuits","authors":"Sanjiang Li;Xiangzhen Zhou;Yuan Feng","doi":"10.1109/TQE.2025.3527399","DOIUrl":null,"url":null,"abstract":"Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. <monospace>QKNOB</monospace> circuits have built-in transformations with near-optimal (close to the theoretical optimum) <sc>swap</small> count and depth overhead. <monospace>QKNOB</monospace> provides general and unbiased evaluation of QCT algorithms. Using <monospace>QKNOB</monospace>, we demonstrate that <monospace>SABRE</monospace>, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both <sc>swap</small> count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of <monospace>QKNOB</monospace>. Our construction algorithm and benchmarks are open-source.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10833714","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10833714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for QCT. QKNOB circuits have built-in transformations with near-optimal (close to the theoretical optimum) swap count and depth overhead. QKNOB provides general and unbiased evaluation of QCT algorithms. Using QKNOB, we demonstrate that SABRE, the default Qiskit compiler, consistently achieves the best performance on the 53-qubit IBM Q Rochester and Google Sycamore devices for both swap count and depth objectives. Our results also reveal significant performance gaps relative to the near-optimal transformation costs of QKNOB. Our construction algorithm and benchmarks are open-source.
利用 QKNOB 电路为量子电路转换建立基准
目前的超导量子器件对量子电路的执行有严格的连通性约束,在物理硬件上执行量子电路之前需要进行电路转换。许多量子电路变换(QCT)算法已经被提出。为了对最先进的QCT算法进行忠实评估,本文介绍了一种新的QCT基准构建方法——已知近最优性量子比特映射基准(QKNOB)。QKNOB电路具有接近最优(接近理论最优)交换计数和深度开销的内置转换。QKNOB提供了QCT算法的一般和无偏评估。使用QKNOB,我们证明了默认的Qiskit编译器SABRE在53量子位IBM Q Rochester和谷歌Sycamore设备上始终实现交换计数和深度目标的最佳性能。我们的结果还揭示了相对于QKNOB接近最优转换成本的显著性能差距。我们的构造算法和基准是开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信