噪声感知量子振幅估计

Steven Herbert;Ifan Williams;Roland Guichard;Darren Ng
{"title":"噪声感知量子振幅估计","authors":"Steven Herbert;Ifan Williams;Roland Guichard;Darren Ng","doi":"10.1109/TQE.2024.3476929","DOIUrl":null,"url":null,"abstract":"In this article, based on some simple and reasonable assumptions, we derive a Gaussian noise model for quantum amplitude estimation. We provide results from quantum amplitude estimation run on various IBM superconducting quantum computers and on Quantinuum's H1 trapped-ion quantum computer to show that the proposed model is a good fit for real-world experimental data. We also show that the proposed Gaussian noise model can be easily composed with other noise models in order to capture effects that are not well described by Gaussian noise. We give a generalized procedure for how to embed this noise model into any quantum-phase-estimation-free quantum amplitude estimation algorithm, such that the amplitude estimation is “noise aware.” We then provide experimental results from running an implementation of noise-aware quantum amplitude estimation using data from an IBM superconducting quantum computer, demonstrating that the addition of “noise awareness” serves as an effective means of quantum error mitigation.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711252","citationCount":"0","resultStr":"{\"title\":\"Noise-Aware Quantum Amplitude Estimation\",\"authors\":\"Steven Herbert;Ifan Williams;Roland Guichard;Darren Ng\",\"doi\":\"10.1109/TQE.2024.3476929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, based on some simple and reasonable assumptions, we derive a Gaussian noise model for quantum amplitude estimation. We provide results from quantum amplitude estimation run on various IBM superconducting quantum computers and on Quantinuum's H1 trapped-ion quantum computer to show that the proposed model is a good fit for real-world experimental data. We also show that the proposed Gaussian noise model can be easily composed with other noise models in order to capture effects that are not well described by Gaussian noise. We give a generalized procedure for how to embed this noise model into any quantum-phase-estimation-free quantum amplitude estimation algorithm, such that the amplitude estimation is “noise aware.” We then provide experimental results from running an implementation of noise-aware quantum amplitude estimation using data from an IBM superconducting quantum computer, demonstrating that the addition of “noise awareness” serves as an effective means of quantum error mitigation.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711252\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10711252/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10711252/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,基于一些简单合理的假设,我们推导出了量子振幅估计的高斯噪声模型。我们提供了在各种 IBM 超导量子计算机和 Quantinuum 的 H1 捕获离子量子计算机上运行的量子振幅估计结果,表明所提出的模型与真实世界的实验数据非常吻合。我们还表明,所提出的高斯噪声模型可以很容易地与其他噪声模型组成,以捕捉高斯噪声无法很好描述的效应。我们给出了如何将该噪声模型嵌入任何无量子相位估计的量子振幅估计算法的通用程序,从而使振幅估计具有 "噪声意识"。然后,我们提供了利用 IBM 超导量子计算机的数据运行噪声感知量子振幅估算实现的实验结果,证明增加 "噪声感知 "可作为量子误差缓解的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise-Aware Quantum Amplitude Estimation
In this article, based on some simple and reasonable assumptions, we derive a Gaussian noise model for quantum amplitude estimation. We provide results from quantum amplitude estimation run on various IBM superconducting quantum computers and on Quantinuum's H1 trapped-ion quantum computer to show that the proposed model is a good fit for real-world experimental data. We also show that the proposed Gaussian noise model can be easily composed with other noise models in order to capture effects that are not well described by Gaussian noise. We give a generalized procedure for how to embed this noise model into any quantum-phase-estimation-free quantum amplitude estimation algorithm, such that the amplitude estimation is “noise aware.” We then provide experimental results from running an implementation of noise-aware quantum amplitude estimation using data from an IBM superconducting quantum computer, demonstrating that the addition of “noise awareness” serves as an effective means of quantum error mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信