IEEE Journal on Miniaturization for Air and Space Systems最新文献

筛选
英文 中文
Fragility-Rejection UAV Flight Control With Discrete-Time Constrained Dynamics Endowing Preselected Qualities 具有预选特性的离散时间约束动力学的抗脆弱无人机飞行控制
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-11-27 DOI: 10.1109/JMASS.2024.3507735
Xiangwei Bu;Ruining Luo;Jiaxi Chen;Humin Lei
{"title":"Fragility-Rejection UAV Flight Control With Discrete-Time Constrained Dynamics Endowing Preselected Qualities","authors":"Xiangwei Bu;Ruining Luo;Jiaxi Chen;Humin Lei","doi":"10.1109/JMASS.2024.3507735","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3507735","url":null,"abstract":"Our objective is to explore a finite-time tracking control protocol with fragility-rejection for discrete-time systems subject to saturation constrained dynamics, specifically in the field of UAV flight control. This protocol is capable of imposing desired transient and steady-state behaviors on tracking errors, while introducing transformed errors utilizing finite-time performance functions and stabilizing them indirectly through feedback terms developed using these functions in a back-stepping-like control design. Our approach introduces a structure that distinguishes it from existing transformed-error-stabilization-based prescribed performance control (PPC) methods. Furthermore, we propose a compensated system to modify the final feedback term and address actuator saturation, effectively resolving the challenging fragility issue associated with existing PPC approaches caused by error fluctuation due to actuator saturation in discrete-time systems. Finally, comparative simulation results obtained for flight control applications validate the effectiveness of our design.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 1","pages":"27-35"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol.
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-11-25 DOI: 10.1109/JMASS.2024.3504992
{"title":"2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5","authors":"","doi":"10.1109/JMASS.2024.3504992","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3504992","url":null,"abstract":"","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"274-281"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766876","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Journal of Miniaturized Air and Space Systems 微型化航空航天系统杂志
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-11-20 DOI: 10.1109/JMASS.2024.3496303
{"title":"The Journal of Miniaturized Air and Space Systems","authors":"","doi":"10.1109/JMASS.2024.3496303","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3496303","url":null,"abstract":"","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Low Profile Wideband Circularly Polarized Slotted Waveguide Antenna for W-Band CubeSat Data-Links 用于w波段立方体卫星数据链路的低轮廓宽带圆极化开槽波导天线
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-11-05 DOI: 10.1109/JMASS.2024.3491319
Shilpi Singh;Shakti Singh Chauhan;Ananjan Basu
{"title":"A Low Profile Wideband Circularly Polarized Slotted Waveguide Antenna for W-Band CubeSat Data-Links","authors":"Shilpi Singh;Shakti Singh Chauhan;Ananjan Basu","doi":"10.1109/JMASS.2024.3491319","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3491319","url":null,"abstract":"This article presents a dual circularly polarized slotted waveguide leaky wave antenna for CubeSat communications at W-band. The proposed fully metallic, low profile, and high-performing antenna offers wideband operating bandwidth, which makes it suitable for space applications. To achieve circular polarization, an array of circular holes is perforated at an offset position from the narrow wall of the WR-10 waveguide. The prototype antenna provides a wide axial ratio bandwidth of 13% and an average half-power beamwidth of 4.5° on the elevation plane. At high frequencies, the thickness of the slot affects the emission through the slot, which is not typically encountered at low frequencies. Therefore, to increase the magnitude of the radiated power, the wall thickness of the hole is reduced. The proposed circular hole slotted waveguide antenna design provides superior tolerance, accuracy, and precision compared to any other structures. These characteristics eliminate fabrication challenges, especially within the W-band, and can seamlessly extend into the sub-THz domain as well. The proposed antenna is robust, easy to fabricate, and appropriate for integration into CubeSat. It can be adapted for W-band CubeSat LEO, intersatellite, and constellation missions.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 1","pages":"19-26"},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Connected UAV Anti-Interference Path Planning Based on PDS-DDPG and TOPEM 基于PDS-DDPG和TOPEM的蜂窝互联无人机抗干扰路径规划
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-11-04 DOI: 10.1109/JMASS.2024.3490762
Quanxi Zhou;Yongjing Wang;Ruiyu Shen;Jin Nakazato;Manabu Tsukada;Zhenyu Guan
{"title":"Cellular Connected UAV Anti-Interference Path Planning Based on PDS-DDPG and TOPEM","authors":"Quanxi Zhou;Yongjing Wang;Ruiyu Shen;Jin Nakazato;Manabu Tsukada;Zhenyu Guan","doi":"10.1109/JMASS.2024.3490762","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3490762","url":null,"abstract":"Due to the randomness of channel fading, communication devices, and malicious interference sources, uncrewed aerial vehicles (UAVs) face a complex and ever-changing task scenario, which poses significant communication security challenges, such as transmission outages. Fortunately, these communication security challenges can be transformed into path-planning problems that minimize the weighted sum of UAV mission time and transmission outage time. In order to design the complex communication environment faced by UAVs in actual scenarios, we propose a system model, including building distribution, communication channel, and antenna design, in this article. Besides, we introduce other UAVs with fixed flight paths and ground interference resources with random locations to ensure mission UAVs have better anti-interference ability. However, it is challenging for classical search algorithms and heuristic algorithms to cope with the complex path problems mentioned above. In this article, we propose an improved deep deterministic policy gradient (DDPG) algorithm with better performance compared with basic DDPG and double deep Q-network learning (DDQN) algorithms. Specifically, a post-decision state (PDS) mechanism has been introduced to accelerate the convergence rate and enhance the stability of the training process. In addition, a transmission outage probability experience memory (TOPEM) has been designed to quickly generate wireless communication quality maps and provide temporary experience for the post-decision process, resulting in better training results. Simulation experiments have proven that, compared to basic DDPG, the improved algorithm increases training speed by at least 50 %, significantly improves convergence rate, and reduces the episode required for convergence to 20 %. It can alsohelp UAVs choose better paths than basic DDPG and DDQN algorithms.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 1","pages":"2-18"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous Service-Oriented Resource Provisioning and UAV Deployment for Aerial Edge Computing Networks 面向空中边缘计算网络的异构服务资源发放与无人机部署
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-10-25 DOI: 10.1109/JMASS.2024.3486374
Yanpeng Dai;Lijiao Zhang
{"title":"Heterogeneous Service-Oriented Resource Provisioning and UAV Deployment for Aerial Edge Computing Networks","authors":"Yanpeng Dai;Lijiao Zhang","doi":"10.1109/JMASS.2024.3486374","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3486374","url":null,"abstract":"Uncrewed aerial vehicle (UAV)-assisted mobile-edge computing (MEC) has been a promising architecture to enable seamless aerial computing and communications. With evolving requirements of heterogeneous services in future wireless networks, it is challenging to realize on-demand resource management and network deployment in UAV-assisted MEC systems. This article investigates unified communication and computation resource management as well as network deployment to meet the quality of service (QoS) of enhanced mobile broadband (eMBB) and massive machine-type communication (mMTC) simultaneously. A network utility minimization problem is formulated which jointly considers UAV deployment, user association, spectrum slicing, communication, and computation resource allocation. First, a coalition game-based UAV deployment and eMBB user (eUE) association algorithm is designed, based on which a communication and computation resource allocation algorithm is devised by convex optimization. The mMTC user (mUE) association and power control is optimized via successive convex approximation. Then, a spectrum slicing and allocation algorithm is designed by the bisection search method. Finally, a joint resource allocation and network deployment scheme is proposed. Simulation results demonstrate that our proposed algorithm can effectively reduce average service delay of eUEs and increase the number of served mUEs in UAV-assisted MEC systems.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 2","pages":"133-143"},"PeriodicalIF":0.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144179169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure Offloading in NOMA-Aided Aerial MEC Systems Based on Deep Reinforcement Learning 基于深度强化学习的noma辅助空中MEC系统安全卸载
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-10-14 DOI: 10.1109/JMASS.2024.3479456
Hongjiang Lei;Mingxu Yang;Jiacheng Jiang;Ki-Hong Park;Gaofeng Pan
{"title":"Secure Offloading in NOMA-Aided Aerial MEC Systems Based on Deep Reinforcement Learning","authors":"Hongjiang Lei;Mingxu Yang;Jiacheng Jiang;Ki-Hong Park;Gaofeng Pan","doi":"10.1109/JMASS.2024.3479456","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3479456","url":null,"abstract":"Mobile edge computing (MEC) technology can reduce user latency and energy consumption by offloading computationally intensive tasks to the edge servers. Uncrewed aerial vehicles (UAVs) and nonorthogonal multiple access (NOMA) technology enable the MEC networks to provide offloaded computing services for massively accessed terrestrial users conveniently. However, the broadcast nature of signal propagation in NOMA-based UAV-MEC networks makes it vulnerable to eavesdropping by malicious eavesdroppers. In this work, a secure offload scheme is proposed for NOMA-based UAV-MEC systems with the existence of an aerial eavesdropper. The long-term average network computational cost is minimized by jointly designing the UAV’s trajectory, the terrestrial users’ transmit power, and computational frequency while ensuring the security of users’ offloaded data. Due to the eavesdropper’s location uncertainty, the worst-case security scenario is considered through the estimated eavesdropping range. Due to the high-dimensional continuous action space, the deep deterministic policy gradient algorithm is utilized to solve the nonconvex optimization problem. Simulation results validate the effectiveness of the proposed scheme.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 2","pages":"113-124"},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144178862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV 基于增强磁场聚合的宽带微型天线在无人飞行器中的应用
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-10-11 DOI: 10.1109/JMASS.2024.3479151
Ju Gao;Zhangziyi Jin;Zonghui Li;Zixian Chen;Qingwang Wang
{"title":"Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV","authors":"Ju Gao;Zhangziyi Jin;Zonghui Li;Zixian Chen;Qingwang Wang","doi":"10.1109/JMASS.2024.3479151","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3479151","url":null,"abstract":"As unmanned aerial vehicles (UAVs) continue to play an increasingly critical role in reconnaissance missions, establishing dependable communication links between UAVs and ground stations has become imperative. Nevertheless, ensuring reliable communication remains a great challenge, particularly in environments characterized by weak signals or high levels of electromagnetic interference. To tackle this challenge, this study presents a design and optimization approach for a miniature UAV antenna. This antenna achieves significant performance improvements by optimizing the magnetic field (MF) distribution and convergence within its central section. Specifically with the aim of capturing and amplifying signals in a specified direction, the antenna enhances reception sensitivity, especially in challenging operational settings. The structure ensures robust and consistent signal reception with a maximum gain of up to 12.8 dB and a converging MF magnitude of 2279 A/m at its center. Furthermore, it operates effectively within the C band, exhibiting a relative bandwidth of 12.2%. This capability empowers UAV to transmit reconnaissance data accurately and swiftly, regardless of the distance traveled or the complexity of the electromagnetic environment. This advancement not only enhances UAV capabilities but also opens new possibility for applications requiring dependable communication in diverse and demanding scenarios.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"265-273"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a Better Tradeoff Between Accuracy and Robustness for Image Classification via Adversarial Feature Diversity 通过逆向特征多样性,在图像分类的准确性和稳健性之间实现更好的权衡
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-09-17 DOI: 10.1109/JMASS.2024.3462548
Wei Xue;Yonghao Wang;Yuchi Wang;Yue Wang;Mingyang Du;Xiao Zheng
{"title":"Toward a Better Tradeoff Between Accuracy and Robustness for Image Classification via Adversarial Feature Diversity","authors":"Wei Xue;Yonghao Wang;Yuchi Wang;Yue Wang;Mingyang Du;Xiao Zheng","doi":"10.1109/JMASS.2024.3462548","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3462548","url":null,"abstract":"Deep neural network-based image classification models are vulnerable to adversarial examples, which are meticulously crafted to mislead the model by adding perturbations to clean images. Although adversarial training demonstrates outstanding performance in enhancing models robustness against adversarial examples, it often incurs the expense of accuracy. To address this problem, this article proposes a strategy to achieve a better tradeoff between accuracy and robustness, which mainly consists of symbol perturbations and examples mixing. First, we employ a symbol processing approach for randomly generated initial perturbations, which makes model identify the correct parameter attack direction faster during the training process. Second, we put forward a methodology that utilizes a mixture of different examples to generate more distinct adversarial features. Further, we utilize scaling conditions for tensor feature modulation, enabling the model to achieve both improved accuracy and robustness after learning more diverse adversarial features. Finally, we conduct extensive experiments to show the feasibility and effectiveness of the proposed methods.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"254-264"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Dynamic Surface Control for Uncertain Nonlinear Systems With Application to Fighter Jet System 改进不确定非线性系统的动态表面控制并应用于战斗机系统
IEEE Journal on Miniaturization for Air and Space Systems Pub Date : 2024-08-29 DOI: 10.1109/JMASS.2024.3451477
Li Zhao;Chuan Qin;Qiuni Li;Chongchong Han;Jialong Jian;Yuanfei Liu
{"title":"Improved Dynamic Surface Control for Uncertain Nonlinear Systems With Application to Fighter Jet System","authors":"Li Zhao;Chuan Qin;Qiuni Li;Chongchong Han;Jialong Jian;Yuanfei Liu","doi":"10.1109/JMASS.2024.3451477","DOIUrl":"https://doi.org/10.1109/JMASS.2024.3451477","url":null,"abstract":"An improved dynamic surface control (IDSC) method is proposed for a class of strict-feedback nonlinear systems with internal uncertainties and external disturbances. First, compared with the typical first-order sliding-mode differentiator, this article presents an improved method to obtain the first-order differential approximation of the virtual control signals, which tackles the obstacle of “explosion of complexity.” Second, to eliminate the effect of filtering errors that exist in traditional dynamic surface control method, in this article, the tracking errors are directly constructed using the virtual control signal. Third, composite disturbances were estimated and compensated by designing a novel disturbance observer, which eliminates the limitations that the disturbance terms must be differentiable or even slow tensors. Finally, to illustrate that the proposed method has a great ability to suppress fast time-varying and nondifferentiable disturbances, the simulation results of a numerical example and a practical example of a modern advanced fighter jet system were presented.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"246-253"},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信