Hongjiang Lei;Mingxu Yang;Jiacheng Jiang;Ki-Hong Park;Gaofeng Pan
{"title":"基于深度强化学习的noma辅助空中MEC系统安全卸载","authors":"Hongjiang Lei;Mingxu Yang;Jiacheng Jiang;Ki-Hong Park;Gaofeng Pan","doi":"10.1109/JMASS.2024.3479456","DOIUrl":null,"url":null,"abstract":"Mobile edge computing (MEC) technology can reduce user latency and energy consumption by offloading computationally intensive tasks to the edge servers. Uncrewed aerial vehicles (UAVs) and nonorthogonal multiple access (NOMA) technology enable the MEC networks to provide offloaded computing services for massively accessed terrestrial users conveniently. However, the broadcast nature of signal propagation in NOMA-based UAV-MEC networks makes it vulnerable to eavesdropping by malicious eavesdroppers. In this work, a secure offload scheme is proposed for NOMA-based UAV-MEC systems with the existence of an aerial eavesdropper. The long-term average network computational cost is minimized by jointly designing the UAV’s trajectory, the terrestrial users’ transmit power, and computational frequency while ensuring the security of users’ offloaded data. Due to the eavesdropper’s location uncertainty, the worst-case security scenario is considered through the estimated eavesdropping range. Due to the high-dimensional continuous action space, the deep deterministic policy gradient algorithm is utilized to solve the nonconvex optimization problem. Simulation results validate the effectiveness of the proposed scheme.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"6 2","pages":"113-124"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Offloading in NOMA-Aided Aerial MEC Systems Based on Deep Reinforcement Learning\",\"authors\":\"Hongjiang Lei;Mingxu Yang;Jiacheng Jiang;Ki-Hong Park;Gaofeng Pan\",\"doi\":\"10.1109/JMASS.2024.3479456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile edge computing (MEC) technology can reduce user latency and energy consumption by offloading computationally intensive tasks to the edge servers. Uncrewed aerial vehicles (UAVs) and nonorthogonal multiple access (NOMA) technology enable the MEC networks to provide offloaded computing services for massively accessed terrestrial users conveniently. However, the broadcast nature of signal propagation in NOMA-based UAV-MEC networks makes it vulnerable to eavesdropping by malicious eavesdroppers. In this work, a secure offload scheme is proposed for NOMA-based UAV-MEC systems with the existence of an aerial eavesdropper. The long-term average network computational cost is minimized by jointly designing the UAV’s trajectory, the terrestrial users’ transmit power, and computational frequency while ensuring the security of users’ offloaded data. Due to the eavesdropper’s location uncertainty, the worst-case security scenario is considered through the estimated eavesdropping range. Due to the high-dimensional continuous action space, the deep deterministic policy gradient algorithm is utilized to solve the nonconvex optimization problem. Simulation results validate the effectiveness of the proposed scheme.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"6 2\",\"pages\":\"113-124\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715690/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10715690/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure Offloading in NOMA-Aided Aerial MEC Systems Based on Deep Reinforcement Learning
Mobile edge computing (MEC) technology can reduce user latency and energy consumption by offloading computationally intensive tasks to the edge servers. Uncrewed aerial vehicles (UAVs) and nonorthogonal multiple access (NOMA) technology enable the MEC networks to provide offloaded computing services for massively accessed terrestrial users conveniently. However, the broadcast nature of signal propagation in NOMA-based UAV-MEC networks makes it vulnerable to eavesdropping by malicious eavesdroppers. In this work, a secure offload scheme is proposed for NOMA-based UAV-MEC systems with the existence of an aerial eavesdropper. The long-term average network computational cost is minimized by jointly designing the UAV’s trajectory, the terrestrial users’ transmit power, and computational frequency while ensuring the security of users’ offloaded data. Due to the eavesdropper’s location uncertainty, the worst-case security scenario is considered through the estimated eavesdropping range. Due to the high-dimensional continuous action space, the deep deterministic policy gradient algorithm is utilized to solve the nonconvex optimization problem. Simulation results validate the effectiveness of the proposed scheme.