Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV

Ju Gao;Zhangziyi Jin;Zonghui Li;Zixian Chen;Qingwang Wang
{"title":"Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV","authors":"Ju Gao;Zhangziyi Jin;Zonghui Li;Zixian Chen;Qingwang Wang","doi":"10.1109/JMASS.2024.3479151","DOIUrl":null,"url":null,"abstract":"As unmanned aerial vehicles (UAVs) continue to play an increasingly critical role in reconnaissance missions, establishing dependable communication links between UAVs and ground stations has become imperative. Nevertheless, ensuring reliable communication remains a great challenge, particularly in environments characterized by weak signals or high levels of electromagnetic interference. To tackle this challenge, this study presents a design and optimization approach for a miniature UAV antenna. This antenna achieves significant performance improvements by optimizing the magnetic field (MF) distribution and convergence within its central section. Specifically with the aim of capturing and amplifying signals in a specified direction, the antenna enhances reception sensitivity, especially in challenging operational settings. The structure ensures robust and consistent signal reception with a maximum gain of up to 12.8 dB and a converging MF magnitude of 2279 A/m at its center. Furthermore, it operates effectively within the C band, exhibiting a relative bandwidth of 12.2%. This capability empowers UAV to transmit reconnaissance data accurately and swiftly, regardless of the distance traveled or the complexity of the electromagnetic environment. This advancement not only enhances UAV capabilities but also opens new possibility for applications requiring dependable communication in diverse and demanding scenarios.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 4","pages":"265-273"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10714407/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As unmanned aerial vehicles (UAVs) continue to play an increasingly critical role in reconnaissance missions, establishing dependable communication links between UAVs and ground stations has become imperative. Nevertheless, ensuring reliable communication remains a great challenge, particularly in environments characterized by weak signals or high levels of electromagnetic interference. To tackle this challenge, this study presents a design and optimization approach for a miniature UAV antenna. This antenna achieves significant performance improvements by optimizing the magnetic field (MF) distribution and convergence within its central section. Specifically with the aim of capturing and amplifying signals in a specified direction, the antenna enhances reception sensitivity, especially in challenging operational settings. The structure ensures robust and consistent signal reception with a maximum gain of up to 12.8 dB and a converging MF magnitude of 2279 A/m at its center. Furthermore, it operates effectively within the C band, exhibiting a relative bandwidth of 12.2%. This capability empowers UAV to transmit reconnaissance data accurately and swiftly, regardless of the distance traveled or the complexity of the electromagnetic environment. This advancement not only enhances UAV capabilities but also opens new possibility for applications requiring dependable communication in diverse and demanding scenarios.
基于增强磁场聚合的宽带微型天线在无人飞行器中的应用
随着无人飞行器(UAV)在侦察任务中发挥越来越重要的作用,在无人飞行器和地面站之间建立可靠的通信链路已变得势在必行。然而,确保可靠的通信仍然是一项巨大的挑战,尤其是在信号微弱或电磁干扰严重的环境中。为了应对这一挑战,本研究提出了一种微型无人机天线的设计和优化方法。该天线通过优化磁场(MF)分布及其中心部分的聚合,实现了性能的显著提高。特别是为了捕捉和放大指定方向的信号,该天线提高了接收灵敏度,尤其是在具有挑战性的操作环境中。这种结构可确保稳定可靠的信号接收,最大增益可达 12.8 dB,中心汇聚的 MF 幅值为 2279 A/m 。此外,它还能在 C 波段内有效工作,显示出 12.2% 的相对带宽。无论飞行距离多远或电磁环境多么复杂,这种能力都能使无人机准确、快速地传输侦察数据。这一进步不仅增强了无人机的能力,还为需要在各种苛刻场景中进行可靠通信的应用提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信