Fundamental Plasma Physics最新文献

筛选
英文 中文
Non-modal stability analysis of magnetohydrodynamic flows for liquid metal blankets of fusion reactors 熔堆液态金属包层磁流体动力流动的非模态稳定性分析
Fundamental Plasma Physics Pub Date : 2025-09-01 DOI: 10.1016/j.fpp.2025.100097
Matteo Lo Verso , Carolina Introini , Eric Cervi , Matteo Di Prinzio , Marco Caramello , Francesca Giacobbo , Francois Foulon , Xiang Wang , Laura Savoldi , Antonio Cammi
{"title":"Non-modal stability analysis of magnetohydrodynamic flows for liquid metal blankets of fusion reactors","authors":"Matteo Lo Verso ,&nbsp;Carolina Introini ,&nbsp;Eric Cervi ,&nbsp;Matteo Di Prinzio ,&nbsp;Marco Caramello ,&nbsp;Francesca Giacobbo ,&nbsp;Francois Foulon ,&nbsp;Xiang Wang ,&nbsp;Laura Savoldi ,&nbsp;Antonio Cammi","doi":"10.1016/j.fpp.2025.100097","DOIUrl":"10.1016/j.fpp.2025.100097","url":null,"abstract":"<div><div>The research and experimentation in the field of magnetic confinement fusion is constantly advancing. For precise control of the thermonuclear plasma and the operating fluids in fusion reactors, it is essential to reach a comprehensive understanding of the behavior of conducting fluids interacting with magnetic fields. This study focuses on one of the options envisaged for the breeding blanket of the future tokamaks and explores the impact of different magnetic profiles on the flow regime of lead-lithium. The stability of magnetohydrodynamic (MHD) flow in an infinite pipe is investigated, with a focus on the influence of the applied magnetic field on fluid dynamics. This study specifically compares the effects of magnetic fields with different intensity on the general stability. Both the classical modal stability analysis and the more recent non-modal approach have been adopted to study, respectively, the asymptotic and the short-term evolution of the magnetohydrodyamic system after perturbations in the applied magnetic field or in the thermofluid regime. The results highlight the importance of using the non-modal stability, which allows to investigate the transient growths experienced by the perturbed system, a phenomenon not observable by modal stability analysis alone. Additionally, a zero-dimensional lumped model of the lead-lithium pipe flow is examined to study the impact of thermal effects on system stability and wall deformations of the pipe. The results suggest that the deformation effects experienced by the walls due to temperature oscillations in the perturbed system are negligible.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"15 ","pages":"Article 100097"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axisymmetric coil winding surfaces for non-axisymmetric fusion devices 非轴对称熔合装置的轴对称线圈绕组表面
Fundamental Plasma Physics Pub Date : 2025-09-01 DOI: 10.1016/j.fpp.2025.100098
J. Biu , R. Jorge
{"title":"Axisymmetric coil winding surfaces for non-axisymmetric fusion devices","authors":"J. Biu ,&nbsp;R. Jorge","doi":"10.1016/j.fpp.2025.100098","DOIUrl":"10.1016/j.fpp.2025.100098","url":null,"abstract":"<div><div>Stellarators are fusion energy devices that confine a plasma using non-axisymmetric magnetic fields. Complex coils with tight construction tolerances are needed to create such fields. To simplify such coils, we use a method here to create filamentary curves bounded to a coil winding surface. This approach bypasses the need to find contours of the current potential in that surface while allowing gradients to be obtained for both the winding surface and the coil shapes. The parameterization of the coil curves allows the modeling of both modular and helical coils. As an application, we optimize a set of coils to reproduce a quasisymmetric stellarator equilibrium. A comparison is performed between coils parameterized in two different winding surfaces, namely an axisymmetric circular toroidal surface and a surface rescaled from the plasma boundary. Finally, an analysis is performed on the optimal distance between the plasma and the coil winding surface.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"15 ","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145107691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion research in a Deuterium-Tritium tokamak 氘-氚托卡马克的聚变研究
Fundamental Plasma Physics Pub Date : 2025-09-01 DOI: 10.1016/j.fpp.2025.100096
Emilia R. Solano
{"title":"Fusion research in a Deuterium-Tritium tokamak","authors":"Emilia R. Solano","doi":"10.1016/j.fpp.2025.100096","DOIUrl":"10.1016/j.fpp.2025.100096","url":null,"abstract":"<div><div>The recent ITER re-baselining calls for new fusion-relevant research best carried out in a DT-capable tokamak device with similar technical choices. The present paper describes key issues that could be addressed in a Suitably Enhanced DT-capable Tokamak (SET), with tungsten plasma facing components, boronization systems, and 10 MW of ECRH, based on JET’s characteristics and knowledgebase. We discuss hardware options, and show that fusion-relevant operational scenarios could be achieved. Notably, development, validation and testing of fusion and nuclear diagnostics, to be used in next generation devices, would require a DT-capable tokamak as described.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"15 ","pages":"Article 100096"},"PeriodicalIF":0.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145107732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing noncanonical Hamiltonian structures in relativistic fluid dynamics 揭示相对论流体动力学中的非正则哈密顿结构
Fundamental Plasma Physics Pub Date : 2025-04-29 DOI: 10.1016/j.fpp.2025.100092
Keiichiro Takeda , Naoki Sato
{"title":"Revealing noncanonical Hamiltonian structures in relativistic fluid dynamics","authors":"Keiichiro Takeda ,&nbsp;Naoki Sato","doi":"10.1016/j.fpp.2025.100092","DOIUrl":"10.1016/j.fpp.2025.100092","url":null,"abstract":"<div><div>We present the noncanonical Hamiltonian structure of the relativistic Euler equations for a perfect fluid in Minkowski spacetime. By identifying the system’s noncanonical Poisson bracket and Hamiltonian, we show that relativistic fluid flows preserve helicity and enstrophy as conserved quantities in three-dimensional and two-dimensional cases, respectively. This holds when the fluid follows a relativistic <span><math><mi>γ</mi></math></span>-barotropic equation of state, which generalizes the classical barotropic condition. Furthermore, we demonstrate that these conserved quantities are Casimir invariants associated with the noncanonical Poisson structure. These findings open new avenues for applying Hamiltonian theory to the study of astrophysical fluids and relativistic plasmas.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"14 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143912896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation of mega-gauss axial and azimuthal magnetic fields in a solid plasma by ultrahigh intensity, circularly polarized femtosecond laser pulses 用超高强度圆偏振飞秒激光脉冲在固体等离子体中产生兆高斯轴向和方位磁场
Fundamental Plasma Physics Pub Date : 2025-03-13 DOI: 10.1016/j.fpp.2025.100088
Anandam Choudhary , Laxman Prasad Goswami , C. Aparajit , Amit D. Lad , Ameya Parab , Yash M. Ved , Trishul Dhalia , Amita Das , G. Ravindra Kumar
{"title":"Generation of mega-gauss axial and azimuthal magnetic fields in a solid plasma by ultrahigh intensity, circularly polarized femtosecond laser pulses","authors":"Anandam Choudhary ,&nbsp;Laxman Prasad Goswami ,&nbsp;C. Aparajit ,&nbsp;Amit D. Lad ,&nbsp;Ameya Parab ,&nbsp;Yash M. Ved ,&nbsp;Trishul Dhalia ,&nbsp;Amita Das ,&nbsp;G. Ravindra Kumar","doi":"10.1016/j.fpp.2025.100088","DOIUrl":"10.1016/j.fpp.2025.100088","url":null,"abstract":"<div><div>The interaction of intense linearly polarized (LP) femtosecond laser pulses with solids is known to generate azimuthal magnetic fields, while circularly polarized (CP) light has been shown to create axial fields. We demonstrate through experiments and particle-in-cell simulations that circularly polarized light can generate both axial and azimuthal fields of comparable magnitude in a plasma created in a solid. Angular distributions of the generated fast electrons at the target front and rear show significant differences between the results for the two polarization states, with circular polarization enforcing more axial confinement. The measurement of the spatial distribution of both types of magnetic fields captures their turbulent evolution.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"14 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143852144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical nonthermal pulsational mode stability thermo-statistically moderated with extra-negative ions 球面非热脉动模式稳定性与额外的负离子热统计缓和
Fundamental Plasma Physics Pub Date : 2025-02-26 DOI: 10.1016/j.fpp.2025.100087
Jonmoni Dutta , Ahmed Atteya , Pralay Kumar Karmakar
{"title":"Spherical nonthermal pulsational mode stability thermo-statistically moderated with extra-negative ions","authors":"Jonmoni Dutta ,&nbsp;Ahmed Atteya ,&nbsp;Pralay Kumar Karmakar","doi":"10.1016/j.fpp.2025.100087","DOIUrl":"10.1016/j.fpp.2025.100087","url":null,"abstract":"<div><div>The presence of diverse negative ions is well-known to modify different collective waves and instabilities in diverse space and astrophysical environments. We herein investigate the stability dynamics of the spherical nonthermal (kappa-modified) pulsational mode of gravitational collapse (PMGC) excitable in astrophysical dust molecular clouds (DMCs). It primarily explores the impact of the realistic nonthermal negative ionic effects on the PMGC stability features. The high-energetic lighter constituents, such as the electrons, positive ions, and negative ions, are modelled with their respective nonthermal kappa (<span><math><mi>κ</mi></math></span>)-distribution laws. The inertial dust particulates are treated in the viscous fluid fabric. Application of spherical normal mode treatment results in a generalized linear quartic (degree-4) dispersion relation. A computational illustrative platform illuminates the underlying stabilizing and destabilizing factors. It is seen that the cloud size, dust mass, dust charge, nonthermality parameters, equilibrium charged dust number density, and neutral dust viscosity play stabilizing roles. It counters the destabilizing scenarios caused by the equilibrium electron number density, positive ion number density, negative ion number density, neutral dust density, and charged dust viscosity. The fundamental physical mechanisms responsible herein are substantiated and compared in light of the previous predictions. The nontrivial avenues of our study in realizing the Jeans-driven galactic structural unit formation processes, moderated actively with the presence of negative ions in diverse real astronomical circumstances are summarily indicated.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"14 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143578458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiative damping of toroidal Alfvén eigenmode in low-shear plasmas 低剪切等离子体环面alfv<s:1>本征模的辐射阻尼
Fundamental Plasma Physics Pub Date : 2025-02-02 DOI: 10.1016/j.fpp.2025.100086
B.N. Breizman , S.E. Sharapov
{"title":"Radiative damping of toroidal Alfvén eigenmode in low-shear plasmas","authors":"B.N. Breizman ,&nbsp;S.E. Sharapov","doi":"10.1016/j.fpp.2025.100086","DOIUrl":"10.1016/j.fpp.2025.100086","url":null,"abstract":"<div><div>Instabilities of Alfvén eigenmodes (AEs) are of significant concern because they can enhance the cross-field transport of fusion-born alpha particles beyond the neoclassical level in magnetic fusion plasmas. The threshold value of alpha-particle pressure for exciting AEs depends critically on the damping rate of AEs. The damping mechanisms include kinetic damping due to interactions with thermal particles, continuum damping due to AE frequency crossing Alfvén continuum, and radiative damping due to emitting kinetic Alfvén waves (KAWs). The radiative damping is substantial and can even prevail in high-temperature burning plasmas [1]. We revisit the radiative damping analytic theory for TAE in plasmas with low positive magnetic shear, considering TAE with an eigenfrequency near the bottom of TAE-gap and with poloidal harmonics of the same sign (even TAE). In contrast to earlier papers, we provide the damping calculations in real space rather than Fourier space. This approach is straightforward technically and more enlightening from a physics standpoint for benchmarking numerical calculations of radiative damping. The parametric dependence of the resulting damping rate agrees with that of Refs. [2-5], but it has a smaller numerical factor in front of it.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High energy gain of ion-driven flux compression in cylindrical target with initial power-law radial density profile 具有初始幂律径向密度分布的圆柱形目标中离子驱动通量压缩的高能量增益
Fundamental Plasma Physics Pub Date : 2025-01-03 DOI: 10.1016/j.fpp.2025.100085
Soheil Khoshbinfar
{"title":"High energy gain of ion-driven flux compression in cylindrical target with initial power-law radial density profile","authors":"Soheil Khoshbinfar","doi":"10.1016/j.fpp.2025.100085","DOIUrl":"10.1016/j.fpp.2025.100085","url":null,"abstract":"<div><div>The magnetized target fusion (MTF) concept is considered an economic way to harness fusion energy that resides between two ICF and MCF pathways. Here, we have proposed a new DT fuel initial density profile that improves final fusion yield in cylindrical targets in MTF. We have employed the Deira-4 MHD code to investigate the performance of these configurations. The potential advantage of an initial density gradient over a common uniform profile assumption in inertial fusion energy is its higher energy gain at the cost of lower input driver energy. It was shown that its energy gain is higher by a factor of two and reduction in driver input energy by a factor of three for a fixed DT fuel mass regime, m<sub>DT</sub>∼2.2 mg. The radial density profile of DT fuel also promises to make larger targets that work at a sub-MJ regime which resolves our concern about the Rayleigh-Taylor instability growth rate during the implosion phase. It has also been shown that the best results with a seed axial magnetic field ∼10 T would be achieved for a power-law density profile, ρ∝r<sup>n</sup>, with an exponent n=3. Moreover, the optimal target geometry attains for initial aspect ratio of ∼15 and ignition threshold reduced from &lt;ρR&gt;<sub>DT,th</sub>=0.56 g/cm<sup>2</sup> in uniform density of DT fuel to the power law density profile of ρ∝r<sup>3</sup> to &lt;ρR&gt;<sub>DT,th</sub> =0.21 g/cm<sup>2</sup>.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100085"},"PeriodicalIF":0.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution of the linear wave-particle kinetic equation for global modes of arbitrary frequency in a tokamak 托卡马克中任意频率全局模态线性波粒动力学方程的解
Fundamental Plasma Physics Pub Date : 2025-01-02 DOI: 10.1016/j.fpp.2025.100084
M. Fitzgerald , B.N. Breizman
{"title":"Solution of the linear wave-particle kinetic equation for global modes of arbitrary frequency in a tokamak","authors":"M. Fitzgerald ,&nbsp;B.N. Breizman","doi":"10.1016/j.fpp.2025.100084","DOIUrl":"10.1016/j.fpp.2025.100084","url":null,"abstract":"<div><div>The linear response of a plasma to perturbations of arbitrary frequency and wavelength is derived for any axisymmetric magnetized toroidal plasma. An explicit transformation to action-angle coordinates is achieved using orthogonal magnetic coordinates and the Littlejohn Lagrangian, establishing the validity of this result to arbitrary order in normalized Larmor radius. The global resonance condition for compressional modes is clarified in more detail than in previous works, confirming that the poloidal orbit-average of the cyclotron frequency gives the desired result at lowest order in Larmor radius. The global plasma response to the perturbation at each resonance is captured by a poloidal and gyroaverage of the perturbing potential. A “global gyroaveraging” of the potential is a natural by-product of this analysis which takes into account the changing of the magnetic field over an orbit. The resonance condition depends on two arbitrary integers which completely separately capture the effects poloidal non-uniformity and finite Larmor radius in generating sidebands. We learn that poloidal sidebands generated for compressional modes are dominated by the change in gyrofrequency over the orbit, which is very different to shear modes where the gyrofrequency only contributes via a finite Larmor radius effect. This increases the number of bounce harmonics required to compute the linear drive, giving a more complicated resonance map. An example calculation is given comparing resonance of shear and compressional modes in a published DIII-D case.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100084"},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-body simulation of spinning particle pairs in a complex plasma crystal 复杂等离子体晶体中自旋粒子对的n体模拟
Fundamental Plasma Physics Pub Date : 2024-12-06 DOI: 10.1016/j.fpp.2024.100082
Zachary Watson , Parker Adamson , Jorge Martinez-Ortiz , Katrina Vermillion , Calvin Carmichael , Samuel Garcia-Rodriguez , Lorin Matthews , Truell Hyde , Bryant Wyatt
{"title":"N-body simulation of spinning particle pairs in a complex plasma crystal","authors":"Zachary Watson ,&nbsp;Parker Adamson ,&nbsp;Jorge Martinez-Ortiz ,&nbsp;Katrina Vermillion ,&nbsp;Calvin Carmichael ,&nbsp;Samuel Garcia-Rodriguez ,&nbsp;Lorin Matthews ,&nbsp;Truell Hyde ,&nbsp;Bryant Wyatt","doi":"10.1016/j.fpp.2024.100082","DOIUrl":"10.1016/j.fpp.2024.100082","url":null,"abstract":"<div><div>Complex plasma, consisting of ionized gas mixed with micron-sized dust particles, exhibit unique behaviors due to the mass disparity between dust grains and other plasma components. These disparities result in non-Hamiltonian dynamics that pose significant challenges for numerical modeling. Under specific conditions, the dust grains self-organize into crystal structures, driven by ion wakefields and subject to imperfections that induce dynamic phenomena like torsions—where dust grains couple and exhibit elliptical motion within the crystal lattice.</div><div>To better understand these phenomena, we developed a near real-time interactive computer model grounded in laboratory conditions, specifically replicating the environment within a GEC RF reference cell. This model addresses the challenges of stiffness in differential equations by employing an innovative point charge approach, where each point charge is dynamically influenced by all dust grains, enhancing the model's accuracy and responsiveness. The system allows for user interaction, enabling the manipulation of parameters and near real-time observation of dust behavior. Our approach balances computational efficiency with the ability to simulate complex plasma dynamics, providing a powerful tool for the study of dusty plasma crystals.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信