Spherical nonthermal pulsational mode stability thermo-statistically moderated with extra-negative ions

Jonmoni Dutta , Ahmed Atteya , Pralay Kumar Karmakar
{"title":"Spherical nonthermal pulsational mode stability thermo-statistically moderated with extra-negative ions","authors":"Jonmoni Dutta ,&nbsp;Ahmed Atteya ,&nbsp;Pralay Kumar Karmakar","doi":"10.1016/j.fpp.2025.100087","DOIUrl":null,"url":null,"abstract":"<div><div>The presence of diverse negative ions is well-known to modify different collective waves and instabilities in diverse space and astrophysical environments. We herein investigate the stability dynamics of the spherical nonthermal (kappa-modified) pulsational mode of gravitational collapse (PMGC) excitable in astrophysical dust molecular clouds (DMCs). It primarily explores the impact of the realistic nonthermal negative ionic effects on the PMGC stability features. The high-energetic lighter constituents, such as the electrons, positive ions, and negative ions, are modelled with their respective nonthermal kappa (<span><math><mi>κ</mi></math></span>)-distribution laws. The inertial dust particulates are treated in the viscous fluid fabric. Application of spherical normal mode treatment results in a generalized linear quartic (degree-4) dispersion relation. A computational illustrative platform illuminates the underlying stabilizing and destabilizing factors. It is seen that the cloud size, dust mass, dust charge, nonthermality parameters, equilibrium charged dust number density, and neutral dust viscosity play stabilizing roles. It counters the destabilizing scenarios caused by the equilibrium electron number density, positive ion number density, negative ion number density, neutral dust density, and charged dust viscosity. The fundamental physical mechanisms responsible herein are substantiated and compared in light of the previous predictions. The nontrivial avenues of our study in realizing the Jeans-driven galactic structural unit formation processes, moderated actively with the presence of negative ions in diverse real astronomical circumstances are summarily indicated.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"14 ","pages":"Article 100087"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828525000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of diverse negative ions is well-known to modify different collective waves and instabilities in diverse space and astrophysical environments. We herein investigate the stability dynamics of the spherical nonthermal (kappa-modified) pulsational mode of gravitational collapse (PMGC) excitable in astrophysical dust molecular clouds (DMCs). It primarily explores the impact of the realistic nonthermal negative ionic effects on the PMGC stability features. The high-energetic lighter constituents, such as the electrons, positive ions, and negative ions, are modelled with their respective nonthermal kappa (κ)-distribution laws. The inertial dust particulates are treated in the viscous fluid fabric. Application of spherical normal mode treatment results in a generalized linear quartic (degree-4) dispersion relation. A computational illustrative platform illuminates the underlying stabilizing and destabilizing factors. It is seen that the cloud size, dust mass, dust charge, nonthermality parameters, equilibrium charged dust number density, and neutral dust viscosity play stabilizing roles. It counters the destabilizing scenarios caused by the equilibrium electron number density, positive ion number density, negative ion number density, neutral dust density, and charged dust viscosity. The fundamental physical mechanisms responsible herein are substantiated and compared in light of the previous predictions. The nontrivial avenues of our study in realizing the Jeans-driven galactic structural unit formation processes, moderated actively with the presence of negative ions in diverse real astronomical circumstances are summarily indicated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信