N-body simulation of spinning particle pairs in a complex plasma crystal

Zachary Watson , Parker Adamson , Jorge Martinez-Ortiz , Katrina Vermillion , Calvin Carmichael , Samuel Garcia-Rodriguez , Lorin Matthews , Truell Hyde , Bryant Wyatt
{"title":"N-body simulation of spinning particle pairs in a complex plasma crystal","authors":"Zachary Watson ,&nbsp;Parker Adamson ,&nbsp;Jorge Martinez-Ortiz ,&nbsp;Katrina Vermillion ,&nbsp;Calvin Carmichael ,&nbsp;Samuel Garcia-Rodriguez ,&nbsp;Lorin Matthews ,&nbsp;Truell Hyde ,&nbsp;Bryant Wyatt","doi":"10.1016/j.fpp.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><div>Complex plasma, consisting of ionized gas mixed with micron-sized dust particles, exhibit unique behaviors due to the mass disparity between dust grains and other plasma components. These disparities result in non-Hamiltonian dynamics that pose significant challenges for numerical modeling. Under specific conditions, the dust grains self-organize into crystal structures, driven by ion wakefields and subject to imperfections that induce dynamic phenomena like torsions—where dust grains couple and exhibit elliptical motion within the crystal lattice.</div><div>To better understand these phenomena, we developed a near real-time interactive computer model grounded in laboratory conditions, specifically replicating the environment within a GEC RF reference cell. This model addresses the challenges of stiffness in differential equations by employing an innovative point charge approach, where each point charge is dynamically influenced by all dust grains, enhancing the model's accuracy and responsiveness. The system allows for user interaction, enabling the manipulation of parameters and near real-time observation of dust behavior. Our approach balances computational efficiency with the ability to simulate complex plasma dynamics, providing a powerful tool for the study of dusty plasma crystals.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex plasma, consisting of ionized gas mixed with micron-sized dust particles, exhibit unique behaviors due to the mass disparity between dust grains and other plasma components. These disparities result in non-Hamiltonian dynamics that pose significant challenges for numerical modeling. Under specific conditions, the dust grains self-organize into crystal structures, driven by ion wakefields and subject to imperfections that induce dynamic phenomena like torsions—where dust grains couple and exhibit elliptical motion within the crystal lattice.
To better understand these phenomena, we developed a near real-time interactive computer model grounded in laboratory conditions, specifically replicating the environment within a GEC RF reference cell. This model addresses the challenges of stiffness in differential equations by employing an innovative point charge approach, where each point charge is dynamically influenced by all dust grains, enhancing the model's accuracy and responsiveness. The system allows for user interaction, enabling the manipulation of parameters and near real-time observation of dust behavior. Our approach balances computational efficiency with the ability to simulate complex plasma dynamics, providing a powerful tool for the study of dusty plasma crystals.
复杂等离子体晶体中自旋粒子对的n体模拟
复杂等离子体是由电离气体和微米级尘埃颗粒混合而成,由于尘埃颗粒和其他等离子体成分之间的质量差异而表现出独特的行为。这些差异导致了非哈密顿动力学,对数值模拟提出了重大挑战。在特定条件下,在离子尾流场的驱动下,尘埃颗粒自组织成晶体结构,并受到不完美的影响,从而诱发诸如扭转之类的动态现象——尘埃颗粒在晶格内相互作用并表现出椭圆运动。为了更好地理解这些现象,我们开发了一个基于实验室条件的近实时交互式计算机模型,专门复制GEC射频参考单元内的环境。该模型通过采用创新的点电荷方法解决了微分方程中刚度的挑战,其中每个点电荷都受到所有尘埃颗粒的动态影响,从而提高了模型的准确性和响应性。该系统允许用户交互,使参数的操作和近实时观察粉尘的行为。我们的方法平衡了计算效率和模拟复杂等离子体动力学的能力,为研究尘埃等离子体晶体提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信