N-body simulation of spinning particle pairs in a complex plasma crystal

Zachary Watson , Parker Adamson , Jorge Martinez-Ortiz , Katrina Vermillion , Calvin Carmichael , Samuel Garcia-Rodriguez , Lorin Matthews , Truell Hyde , Bryant Wyatt
{"title":"N-body simulation of spinning particle pairs in a complex plasma crystal","authors":"Zachary Watson ,&nbsp;Parker Adamson ,&nbsp;Jorge Martinez-Ortiz ,&nbsp;Katrina Vermillion ,&nbsp;Calvin Carmichael ,&nbsp;Samuel Garcia-Rodriguez ,&nbsp;Lorin Matthews ,&nbsp;Truell Hyde ,&nbsp;Bryant Wyatt","doi":"10.1016/j.fpp.2024.100082","DOIUrl":null,"url":null,"abstract":"<div><div>Complex plasma, consisting of ionized gas mixed with micron-sized dust particles, exhibit unique behaviors due to the mass disparity between dust grains and other plasma components. These disparities result in non-Hamiltonian dynamics that pose significant challenges for numerical modeling. Under specific conditions, the dust grains self-organize into crystal structures, driven by ion wakefields and subject to imperfections that induce dynamic phenomena like torsions—where dust grains couple and exhibit elliptical motion within the crystal lattice.</div><div>To better understand these phenomena, we developed a near real-time interactive computer model grounded in laboratory conditions, specifically replicating the environment within a GEC RF reference cell. This model addresses the challenges of stiffness in differential equations by employing an innovative point charge approach, where each point charge is dynamically influenced by all dust grains, enhancing the model's accuracy and responsiveness. The system allows for user interaction, enabling the manipulation of parameters and near real-time observation of dust behavior. Our approach balances computational efficiency with the ability to simulate complex plasma dynamics, providing a powerful tool for the study of dusty plasma crystals.</div></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"13 ","pages":"Article 100082"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex plasma, consisting of ionized gas mixed with micron-sized dust particles, exhibit unique behaviors due to the mass disparity between dust grains and other plasma components. These disparities result in non-Hamiltonian dynamics that pose significant challenges for numerical modeling. Under specific conditions, the dust grains self-organize into crystal structures, driven by ion wakefields and subject to imperfections that induce dynamic phenomena like torsions—where dust grains couple and exhibit elliptical motion within the crystal lattice.
To better understand these phenomena, we developed a near real-time interactive computer model grounded in laboratory conditions, specifically replicating the environment within a GEC RF reference cell. This model addresses the challenges of stiffness in differential equations by employing an innovative point charge approach, where each point charge is dynamically influenced by all dust grains, enhancing the model's accuracy and responsiveness. The system allows for user interaction, enabling the manipulation of parameters and near real-time observation of dust behavior. Our approach balances computational efficiency with the ability to simulate complex plasma dynamics, providing a powerful tool for the study of dusty plasma crystals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信