{"title":"Enhanced education on geology by 3D interactive virtual geological scenes","authors":"Yuan Fang , Yuxin Li , Lei Fan","doi":"10.1016/j.cexr.2025.100094","DOIUrl":"10.1016/j.cexr.2025.100094","url":null,"abstract":"<div><div>Virtual Reality (VR) technology is a computer simulation system that leverages real-life data to create and immerse users in virtual worlds. Widely utilized across various industries, VR technology plays a crucial role in interactive training and education on construction-related subjects such as site visualization, construction processes, and health and safety. It also serves as a beneficial supplementary tool for conducting field trips, an essential component of civil engineering courses. This study showcases our development and implementation of a virtual geology site for geology education utilizing dense point cloud data captured at an actual geology site and a web-based VR tool. We utilized Potree, a free open-source web-graphics-library-based point cloud renderer designed for large point clouds, to create our virtual environment. Geological features, measurements, annotations and quizzes were incorporated to enhance student engagement and teaching effectiveness. To evaluate the impact of the developed virtual geology site, we conducted an anonymous questionnaire survey among students who had participated in field trips and experienced the virtual environment. Their feedback served to validate the effectiveness of the virtual geology site in providing an interactive and enhanced learning experience. Additionally, the study explores the potential for VR to overcome practical challenges associated with traditional field trips, such as accessibility and safety concerns, making it a versatile tool for ongoing and future educational applications in geology and beyond.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"6 ","pages":"Article 100094"},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143274734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hung Jen Kuo , Nigel Newbutt , Sarah George , Michael Laird
{"title":"Using virtual reality mediation in a workplace setting for employees with disabilities: A pilot study","authors":"Hung Jen Kuo , Nigel Newbutt , Sarah George , Michael Laird","doi":"10.1016/j.cexr.2025.100093","DOIUrl":"10.1016/j.cexr.2025.100093","url":null,"abstract":"<div><div>Virtual Reality (VR) evolves rapidly as a pervasive media and many have started to explore how VR can be used to support a wide range of people. VR technology is also being increasingly integrated into both business and educational settings, offering immersive experiences that enhance learning, training, collaboration, and customer engagement. More recently, the use of VR to aid employment for individuals with disabilities has become a topic of interest. One such innovation use case is the integration of VR meditation practices. VR meditation offers a promising avenue to enhance the well-being of individuals with disabilities in the workplace by providing an immersive method to manage stress, enhance focus, and foster relaxation. This pilot study included 23 participants with disabilities who engaged in daily 5-min VR meditation sessions for three days. Results demonstrated the feasibility and preliminary efficacy of the intervention. Participants reported positive experiences, including increased job satisfaction, work engagement, quality of life, and mindfulness. Statistically significant improvements were observed in participants’ work engagement. Participants also provide suggestions for employers looking to adopt a similar approach.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"6 ","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building ethical virtual classrooms: Confucian perspectives on avatars and VR","authors":"Chi-Ming Lam","doi":"10.1016/j.cexr.2024.100092","DOIUrl":"10.1016/j.cexr.2024.100092","url":null,"abstract":"<div><div>This paper examines the ethical implications of using avatars and virtual reality (VR) in education, focusing on issues such as privacy, identity representation, psychological impact, equity in access, and virtual bullying. Confucian ethics, emphasizing virtues like benevolence (<em>ren</em>), righteousness (<em>yi</em>), ritual propriety (<em>li</em>), wisdom (<em>zhi</em>), trustworthiness (<em>xin</em>), and loyalty (<em>zhong</em>), offers a valuable framework for addressing these challenges. Applying these principles, educators and policymakers can create environments that prioritize student well-being and moral development. By integrating Confucian ethics with contemporary ethical frameworks, including deontology, utilitarianism, and virtue ethics, this paper argues for more robust and comprehensive ethical guidelines. The holistic approach of Confucian ethics ensures respect for students’ identities, mental well-being, and equitable learning opportunities. Ultimately, fostering a culture of virtue, respect, and inclusivity can lead to a more ethical and harmonious educational landscape with the responsible use of educational technology.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"6 ","pages":"Article 100092"},"PeriodicalIF":0.0,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perception of head shape, texture fidelity and head orientation of the instructor’s look-alike avatar","authors":"Oyewole Oyekoya , Kwame Agyemang Baffour","doi":"10.1016/j.cexr.2024.100091","DOIUrl":"10.1016/j.cexr.2024.100091","url":null,"abstract":"<div><div>Using look-alike avatars may enhance the likeability and realism of avatars in 3D virtual learning environments. This paper explores perception of the features of the look-alike avatar representations of an instructor in virtual environments in two studies. In a pilot study, an instructor was represented as a look-alike, stick, and video avatar, allowing us to investigate students’ perceptions of teaching effectiveness in virtual and augmented reality environments. The main study seeks to determine the influence of three specific features of a look-alike avatar (head shape, texture fidelity and head orientation) on perception of likeability and visual realism, especially when judged by other people. Two textured look-alike avatars were generated using: (i) three-dimensional (3D) stereophotogrammetry; and (ii) 3D face reconstruction from a single full-face image. Participants compared three different head orientations (0°, 45°, 90°) of the look-alike avatars’ textured heads to their corresponding head silhouettes, to emphasize the differences in head shapes. Results suggest that participants prefer geometrically-accurate photorealistic avatars of the instructor due to the accuracy of the head shape and texture fidelity. In line with studies on face recognition, participants ranked the likeability and realism of the look-alike avatars similarly regardless of the head orientation. We discuss the implications of these findings for 3D virtual learning environments.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"6 ","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engage and learn: Improved learning of cellular structures using a virtual reality-based learning experience","authors":"Heino Laubscher , Ben Loos , Rensu P. Theart","doi":"10.1016/j.cexr.2024.100089","DOIUrl":"10.1016/j.cexr.2024.100089","url":null,"abstract":"<div><div>This study investigates the efficacy of Virtual Reality (VR) as an interactive tool for teaching complex cellular structures and functions. Despite VR’s growing popularity in education, its effectiveness remains debated, often due to the absence of guiding learning theories in VR design studies. Addressing this gap, we developed a VR-based learning experience grounded in the Cognitive Theory of Multimedia Learning (CTML). Utilising modern microscopy techniques, we transformed confocal microscopy z-stacks into three-dimensional cellular structures, enhanced with artistic impressions for VR visualisation. A user study with 52 participants, primarily engineering students, compared the VR learning experience to traditional slideshow methods. Results indicated that the VR group demonstrated significantly higher learning performance and understanding of mammalian cell structures compared to the slideshow group. Additionally, participants in the VR group reported greater intrinsic motivation, presence, and perceived learning effectiveness. These findings suggest VR’s potential as a superior teaching tool in cell physiology and underscore the importance of integrating learning theories like CTML in VR educational design. The principles applied in this study could extend to other educational domains, enhancing learning outcomes through well-theorised VR applications.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143132498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davy Tsz Kit Ng , Wan Yee Winsy Lai , Morris Siu-yung Jong , Chi Wui Ng
{"title":"Using cospaces in augmented reality digital story creation: A thematic analysis","authors":"Davy Tsz Kit Ng , Wan Yee Winsy Lai , Morris Siu-yung Jong , Chi Wui Ng","doi":"10.1016/j.cexr.2024.100090","DOIUrl":"10.1016/j.cexr.2024.100090","url":null,"abstract":"<div><div>With the digital affordances of augmented reality (AR) technologies, research has shown their value for contextualized, interactive and collaborative language learning through supporting real-world immersion. In recent years, CoSpaces has been a popular AR learning tool with an extensive library of 3D models and constructive gadgets, as well as a visual programming platform. With this tool, students can create projects of digital stories by building personalized AR artifacts, scenes, and storylines, and then share their projects in a dynamic and global community of children. This study examined the characteristics of 39 selected CoSpaces’ open projects via thematic analysis and categorization into five learning contexts: (1) art, history, culture and design, (2) STEM, (3) classroom English and everyday communication, (4) fairy tale/literature, and (5) campus tour. Furthermore, this study identified six language learning competencies derived from digital story creation: (1) discovering knowledge, (2) connecting to prior experience and knowledge, (3) conducting research, (4) problem-solving, (5) expressing and creating digitally, as well as (6) presenting, appreciating and evaluating. Digital literacy refers to the ability to use technology to find, evaluate, create, and communicate information. In addition, three major types of digital literacy skills necessary for AR digital storytelling processes have been identified, encompassing digital creativity, technoligcal proficiency, and research skills. Our results contribute to discovering educational values in developing digital language competency through AR digital story creation. Recommendations are offered for future research and for educators to design appropriate AR learning experiences.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143132497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A virtual classroom map-based immersive VR learning approach to fostering collaborative learning","authors":"Xiuli Huang , Felicitas Macgilchrist","doi":"10.1016/j.cexr.2024.100088","DOIUrl":"10.1016/j.cexr.2024.100088","url":null,"abstract":"<div><div>The Virtual Reality (VR) supported collaborative learning approach has been approved as effective collaborative learning in various education by many researchers. However, optimizing high-level collaborative activities for sharing and building knowledge in VR technology-based collaborative learning is lacking. In this study, a virtual classroom map approach was proposed to enhance classroom knowledge-sharing culture and in the meantime support teachers in observing group work and to help students obtain feedback in the immersive virtual reality (IVR) supported collaborative learning in schooling. A randomized crossover design was used to compare the virtual classroom map-supported IVR learning approach (condition 1) and the IVR learning without virtual classroom map approach (condition 2) in English as a Foreign Language (EFL) education in two schools in East Germany. Data analysis showed that: (1) The virtual classroom map-supported IVR learning approach (MIVRL) improved students' content performance on writing tasks compared to IVR learning without the virtual classroom map approach (IVRL). (2) Despite its complex choreography of devices, the MIVRL did not reduce students’ interests and did not increase their fear of failure. (3) The proposed MIVRL approach showed the possibility of turning VR into a practice strengthening a “culture of sharing” in formal education. The results suggest that the virtual classroom map approach may be implemented as a tool for assisting VR-supported collaborative learning. Moreover, with the virtual classroom map, VR can be turned into a practice strengthening a “culture of sharing” in immersive learning.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142697239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immersive quantum: A systematic literature review of XR in quantum technology education","authors":"Ge Song, Xunan Wang, Rami Ghannam","doi":"10.1016/j.cexr.2024.100087","DOIUrl":"10.1016/j.cexr.2024.100087","url":null,"abstract":"<div><div>Recent advancements in quantum technology have created an urgent need for skilled professionals in this field, necessitating innovative educational approaches. This systematic literature review investigates the integration of Extended Reality (XR), including Virtual and Augmented Reality, in quantum technology education. We analyzed 19 shortlisted articles from major digital libraries using comprehensive methodologies, including refined search strings, rigorous inclusion and exclusion criteria as well as manual filtering. Our analysis highlights the application of XR technology across various quantum disciplines, predominantly quantum computing and quantum chemistry, at different educational levels, with a focus on university-level education. Notably, our review reveals a dominance of design-development research, a scarcity of empirical studies and a significant absence of educational learning theories as foundational frameworks. Additionally, we identify critical gaps in the current research landscape, including limited focus on immersive design elements and learner engagement strategies. The findings point towards emerging opportunities for future research, emphasizing the need for more empirical studies, intervention features and a holistic integration of educational learning theories. This review serves as a roadmap for advancing XR-based quantum education, fostering innovative research directions and shaping effective teaching practices.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100087"},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonard A. Annetta , Mark H. Newton , Yvonne Franco , Ashley Johnson , Denise Bressler
{"title":"Examining reading proficiency and science learning using mixed reality in elementary school science","authors":"Leonard A. Annetta , Mark H. Newton , Yvonne Franco , Ashley Johnson , Denise Bressler","doi":"10.1016/j.cexr.2024.100086","DOIUrl":"10.1016/j.cexr.2024.100086","url":null,"abstract":"<div><div>Scientific literacy is foundational for many young learners in primary school grades when they have mastered the ability to comprehend vocabulary terms and the science concepts behind them. Text with engaging visual imagery can improve students' comprehension, enhance retrieval, and increase retention when it is integrated into either or both reading and science instruction. Integrating multimedia experiences into science content reading to enhance text through mixed reality (MR) has the potential to supplement both understanding of science concepts and reading ability. This study examined whether reading elementary science text, heavy in science vocabulary, through MR enhanced students’ reading fluency and/or science content learning. A quasi-experimental convergent mixed methods one group pretest-posttest design was employed with 24 grade 5 students in a rural area of the United States Mid-Atlantic region. Data sources included a reading fluency and retelling test, physical and chemical changes end of unit test, and post-interviews. Wilcoxon Signed Rank Tests suggested reading fluency and comprehension gains were statistically significant (p < .05). Qualitative analyses suggested audio integration, enjoyment while engaging with the MR, and finally the visual components of the MR enhanced the learning process. Findings suggest a potential for MR to increase science learning and reading interest especially among low-proficiency readers.</div></div>","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100086"},"PeriodicalIF":0.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gilles Obourdin , Sven de Maeyer , Piet Van den Bossche
{"title":"Unlocking the power of immersive learning: The FAIRI instructional design proposition for adaptive immersive virtual reality","authors":"Gilles Obourdin , Sven de Maeyer , Piet Van den Bossche","doi":"10.1016/j.cexr.2024.100084","DOIUrl":"10.1016/j.cexr.2024.100084","url":null,"abstract":"","PeriodicalId":100320,"journal":{"name":"Computers & Education: X Reality","volume":"5 ","pages":"Article 100084"},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}