Climate Change Ecology最新文献

筛选
英文 中文
Temperature has a unimodal effect on the functional response of wolf spiders 温度对狼蛛的功能反应具有单峰效应
Climate Change Ecology Pub Date : 2022-09-25 DOI: 10.1016/j.ecochg.2022.100063
John P. DeLong, Stella F. Uiterwaal, Alondra Magallanes
{"title":"Temperature has a unimodal effect on the functional response of wolf spiders","authors":"John P. DeLong,&nbsp;Stella F. Uiterwaal,&nbsp;Alondra Magallanes","doi":"10.1016/j.ecochg.2022.100063","DOIUrl":"https://doi.org/10.1016/j.ecochg.2022.100063","url":null,"abstract":"<div><p>The response of biotic interactions to changes in temperature will play a large role in determining the impact of climate change on ecological communities. In particular, how warming alters predator-prey interactions will influence population stability, food web connectivity, and the movement of energy across trophic levels. The functional response relates predator foraging rates to prey availability, and it is often predicted to increase monotonically with temperature, at least within the limits of predator function. However, some studies suggest that functional responses peak and then decline, and such a difference has critical implications for the effect of warming on ecological communities. Here we investigate the effect of temperature on the functional response of wolf spiders (<em>Schizocosa saltatrix</em>) foraging on midges. Our results clearly support a unimodal response of the functional response, with peak foraging occurring at normal daytime temperatures for the area. Thus, daytime active spiders might experience a decline in foraging with warming, while night active spiders might experience an increase in foraging. Together with previous work, our study strongly suggests that the widespread assumption of a monotonic increase in foraging with warming is not warranted.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"4 ","pages":"Article 100063"},"PeriodicalIF":0.0,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50191471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extreme-sized anurans are more prone to climate-driven extinctions 极端大小的无尾类动物更容易因气候而灭绝
Climate Change Ecology Pub Date : 2022-08-12 DOI: 10.1016/j.ecochg.2022.100062
Anderson Feijó , Catharina M. Karlsson , Russell Gray , Qisen Yang , Alice C. Hughes
{"title":"Extreme-sized anurans are more prone to climate-driven extinctions","authors":"Anderson Feijó ,&nbsp;Catharina M. Karlsson ,&nbsp;Russell Gray ,&nbsp;Qisen Yang ,&nbsp;Alice C. Hughes","doi":"10.1016/j.ecochg.2022.100062","DOIUrl":"https://doi.org/10.1016/j.ecochg.2022.100062","url":null,"abstract":"<div><p>Understanding species responses to climatic change over extended timescales helps elucidate past and future extinction events. Amphibians are one of the most environmentally sensitive groups and yet showed high resilience to the Cretaceous-Paleogene (KPg) mass extinction, an event marked by sudden cooling and drought. To understand this past resilience and the associated filter mechanisms, we investigated the evolutionary history of key survival traits (body size and lifestyle) and explored climate-driven body-size selectivity of modern anuran assemblages. We found clear environment constraints on present-day anurans, where extreme temperatures and high seasonality filter against extreme-sized species. Our fossil-extant phylogenetic reconstruction reveals that anuran assemblages surrounding the KPg were mostly medium-sized species but large anuran species went extinct at the KPg, which is consistent with the uneven size-resilience to climate across modern anurans. Additionally, we found that cooling periods were marked by accelerated body-size diversification in anurans, and we inferred a close association between the evolution of arboreal frogs and angiosperms. Using the climate resilience of modern species as baselines, we estimate that future climate change will impact tropical anurans the most, where up to ∼500 species may face increased climate-related extinction pressure by 2100. Here we show that size-extinction selectivity in anurans is consistent over time and space, with extreme climate conditions filtering out larger and smaller species, conditions of which are likely to become increasingly prevalent in the future.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"4 ","pages":"Article 100062"},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50191484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Climate change likely to increase co-occurrence of island endemic and invasive wildlife 气候变化可能增加岛屿特有野生动物和入侵野生动物的共存
Climate Change Ecology Pub Date : 2022-07-15 DOI: 10.1016/j.ecochg.2022.100061
Wesley W. Boone IV, Robert A. McCleery
{"title":"Climate change likely to increase co-occurrence of island endemic and invasive wildlife","authors":"Wesley W. Boone IV,&nbsp;Robert A. McCleery","doi":"10.1016/j.ecochg.2022.100061","DOIUrl":"https://doi.org/10.1016/j.ecochg.2022.100061","url":null,"abstract":"<div><p>Climate change is altering the distribution of wildlife across the globe. These distributional changes, paired with the environmental and vegetative shifts that spurred them, are likely to change co-occurrence patterns and interspecific interactions of native and invasive wildlife. A mesocosm of global change, we worked on Sanibel Island; a low-lying ∼4,900 ha barrier island in southwestern Florida, USA. Sanibel Island possessed a freshwater interior lined with mangrove forests to the north. Sanibel was ∼50% developed, ∼50% conserved, hydrologically degraded, shrub-encroached, and susceptible to inundation by sea-level rise. We used a Bayesian multispecies occupancy modeling approach to investigate how the effects of climate change might change co-occurrence patterns of 2 native island-endemic species (Sanibel Island rice rat [<em>Oryzomys palustris sanibeli</em>]; insular hispid cotton rat [<em>Sigmodon hispidus insulicola</em>]) and 1 exotic invasive species (black rat [<em>Rattus rattus</em>]). We found that co-occurrence is likely to increase between cotton rats and black rats with unknown impacts on interspecific interactions. We also found that climate change may threaten the persistence of cotton rats and black rats on Sanibel Island, but not rice rats so long as mangrove forests persist. Broadly our research demonstrates the importance of investigating interactions between climate change and co-occurrence when assessing contemporary and future wildlife distributions.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"4 ","pages":"Article 100061"},"PeriodicalIF":0.0,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50191486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production Halimeda海洋酸化效应的系统评价和荟萃分析:对藻类碳酸盐生产的影响
Climate Change Ecology Pub Date : 2022-06-20 DOI: 10.1016/j.ecochg.2022.100059
Nadine Schubert , Lorenzo Alvarez-Filip , Laurie C. Hofmann
{"title":"Systematic review and meta-analysis of ocean acidification effects in Halimeda: Implications for algal carbonate production","authors":"Nadine Schubert ,&nbsp;Lorenzo Alvarez-Filip ,&nbsp;Laurie C. Hofmann","doi":"10.1016/j.ecochg.2022.100059","DOIUrl":"https://doi.org/10.1016/j.ecochg.2022.100059","url":null,"abstract":"<div><p>Ocean acidification (OA) has been identified as one of the major climate-change related threats, mainly due to its significant impacts on marine calcifiers. Among those are the calcareous green algae of the genus <em>Halimeda</em> that are known to be major carbonate producers in shallow tropical and subtropical seas. Hence, any negative OA impacts on these organisms may translate into significant declines in regional and global carbonate production. In this study, we compiled the available information regarding <em>Halimeda</em> spp. responses to OA (experimental, in situ), with special focus on the calcification responses, one of the most studied response parameters in this group. Furthermore, among the compiled studies (<em>n</em> = 31), we selected those reporting quantitative data of OA effects on algal net calcification in an attempt to identify potential general patterns of species- and/or regional-specific OA responses and hence, impacts on carbonate production. While obtaining general patterns was largely hampered by the often scarce number of studies on individual species and/or regions, the currently available information indicates species-specific susceptibility to OA, seemingly unrelated to evolutionary lineages (and associated differences in morphology), that is often accompanied by differences in a species’ response across different regions. Thus, for projections of future declines in <em>Halimeda</em>-associated carbonate production, we used available regional reports of species-specific carbonate production in conjunction with experimental OA responses for the respective species and regions. Based on the available information, declines can be expected worldwide, though some regions harbouring more sensitive species might be more impacted than others.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"4 ","pages":"Article 100059"},"PeriodicalIF":0.0,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50191485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparisons in the native and introduced ranges reveal little evidence of climatic adaptation in germination traits 在本地和引进地区的比较显示很少有证据表明发芽性状的气候适应
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100023
Harold N. Eyster , Elizabeth M. Wolkovich
{"title":"Comparisons in the native and introduced ranges reveal little evidence of climatic adaptation in germination traits","authors":"Harold N. Eyster ,&nbsp;Elizabeth M. Wolkovich","doi":"10.1016/j.ecochg.2021.100023","DOIUrl":"10.1016/j.ecochg.2021.100023","url":null,"abstract":"<div><p>Plant invasions are increasing due to globalization and environmental change, including through anthropogenic climate change. Yet we lack an understanding of how some species become widespread invaders while others do not. Two competing mechanisms have been posited: post-introduction rapid evolution to the novel environments of the introduced range and broad environmental tolerance in the native population that makes invaders tolerant of diverse introduced environments. Each mechanism has implications for how invaders respond to climate change: either by evolving with future climates, or already being tolerant of diverse current/future climates. Disentangling these mechanisms requires investigating how evolution versus tolerance drive invasion traits (germination success and timing; growth rate). Here, we tested for evidence of rapid evolution in these traits by using growth chambers to provide common climates for seven herbaceous plant species sampled from multiple populations in their native (European) and introduced (North American) ranges. Chambers provided two levels of stratification—to simulate different winter lengths—and four temperature levels post-stratification—to simulate different spring conditions. We used Bayesian multilevel models to examine responses, while controlling for population and seed family. Across all species, trait responses were largely similar between native and introduced populations, except in response to particular climates representing cold winters and warm springs where introduced populations germinated later and grew faster. Our results suggest that broad environmental tolerance, not rapid evolution, likely underlies invasion success for these invaders—and may sustain their spread with continued warming—but species may evolve in response to specific combinations of winter and spring climatic regimes.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100023"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84881063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Identifying resilient restoration targets: Mapping and forecasting habitat suitability for Castanea dentata in Eastern USA under different climate-change scenarios 确定弹性恢复目标:不同气候变化情景下美国东部齿状Castanea dentata生境适宜性制图与预测
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100037
Paul H. Noah , Nicolette L. Cagle , Jared W. Westbrook , Sara F. Fitzsimmons
{"title":"Identifying resilient restoration targets: Mapping and forecasting habitat suitability for Castanea dentata in Eastern USA under different climate-change scenarios","authors":"Paul H. Noah ,&nbsp;Nicolette L. Cagle ,&nbsp;Jared W. Westbrook ,&nbsp;Sara F. Fitzsimmons","doi":"10.1016/j.ecochg.2021.100037","DOIUrl":"10.1016/j.ecochg.2021.100037","url":null,"abstract":"<div><p>Following the near-eradication of the American chestnut (Castanea dentata) over the last century by an invasive fungal pathogen, progress has been made in recent decades towards generating blight-resistant varieties for restoration in its former native range in the Eastern US. Maximum Entropy species distribution modeling software was used with known surviving specimen locations and environmental data to determine optimal present-day habitat characteristics. Model projection was used to estimate shifts in ideal habitat under moderate and extreme carbon-emission climate scenarios over several time horizons ranging between present day and 2100. Sites with suitable habitat across all scenarios were identified and suggested as restoration targets, most notably lowland New England and high-elevation Southern and Mid-Atlantic Appalachian regions. The current study builds upon previous work by combining fine-resolution data, regional-scale breadth, future climate models, and a different source of chestnut location data to produce a species distribution model that is concurrently useful to local sample collectors, state-level planners and long-term restoration managers.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100037"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266690052100037X/pdfft?md5=58371988115cab13c65285581ebf6763&pid=1-s2.0-S266690052100037X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85665164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Environmental stressors alter the composition of seagrass phyllosphere microbial communities 环境胁迫改变了海草层圈微生物群落的组成
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100042
Margaret A. Vogel , Olivia U. Mason , Thomas E. Miller
{"title":"Environmental stressors alter the composition of seagrass phyllosphere microbial communities","authors":"Margaret A. Vogel ,&nbsp;Olivia U. Mason ,&nbsp;Thomas E. Miller","doi":"10.1016/j.ecochg.2021.100042","DOIUrl":"10.1016/j.ecochg.2021.100042","url":null,"abstract":"<div><p>Seagrass meadows are among the most valuable habitats in the world as they are used by a wide range of marine organisms and provide important ecosystem services. With increasing human populations and coastal development, seagrasses are under increased stress and coverage is declining worldwide. This is the first experiment to test the effects of two known seagrass stressors, increased temperature and reduced light availability, on the composition of seagrass blade surface microbial communities, which is a relatively understudied community. Analysis of 16S rRNA amplicon (iTag) sequence data revealed that both of these stressors significantly altered microbial community structure, including both taxonomy and abundance, on the blade surfaces of the tropical seagrass <em>Thalassia testudinum</em>. The highest temperature and lowest light treatments showed higher abundances of phyla not commonly reported as indigenous members of seagrass phyllosphere communities, including members of the bacterial phyla <em>Ca.</em> PAUC34f, <em>Ca.</em> Modulibacteria, and Chlamyidae. Despite these compositional difference among treatments, no significant differences in overall microbial diversity or richness were found. These results suggested seagrass phyllosphere microbial communities have the capacity to change significantly and relatively quickly in response to changing environmental conditions due to anthropogenic activity. Further studies are needed to determine if these direct environmental effects on the microbial community or indirect effects that feedback through the seagrass host.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100042"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666900521000423/pdfft?md5=16138cd70309f04af1cbaea0689498c3&pid=1-s2.0-S2666900521000423-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73213141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Climate change impacts on natural icons: Do phenological shifts threaten the relationship between peak wildflowers and visitor satisfaction? 气候变化对自然标志的影响:物候变化是否威胁到峰值野花与游客满意度之间的关系?
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100008
Janneke Hille Ris Lambers , Anthony F. Cannistra , Aji John , Emmi Lia , Rubén D. Manzanedo , Meera Sethi , Jordana Sevigny , Elli J. Theobald , Jazzmine K. Waugh
{"title":"Climate change impacts on natural icons: Do phenological shifts threaten the relationship between peak wildflowers and visitor satisfaction?","authors":"Janneke Hille Ris Lambers ,&nbsp;Anthony F. Cannistra ,&nbsp;Aji John ,&nbsp;Emmi Lia ,&nbsp;Rubén D. Manzanedo ,&nbsp;Meera Sethi ,&nbsp;Jordana Sevigny ,&nbsp;Elli J. Theobald ,&nbsp;Jazzmine K. Waugh","doi":"10.1016/j.ecochg.2021.100008","DOIUrl":"10.1016/j.ecochg.2021.100008","url":null,"abstract":"<div><p>Climate change will affect the timing of natural features of recreational interest, like fall colors, salmon migration, and wildflower blooms; and may therefore alter social-ecological relationships. For example, if fewer recreational visits are aligned with seasonal events of interest, visitor satisfaction could be affected. To explore this possibility at Mount Rainier National Park, we combined data from a community science program (MeadoWatch – MW) with hiking trip reports posted to a hiking organization (Washington Trails Association – WTA). We first explored how peak flowering, WTA trip reports, and visitation varied across years that differed in snow disappearance, a climatic factor that correlates with flowering phenology. We found that wildflower blooms tracked snow disappearance more closely than did trip reports and park visitation, implying a decreasing proportion of future visitors will experience peak wildflower blooms. We next extracted sentiment related to specific trail-experiences (e.g., wildflowers, views) and overall hike satisfaction from WTA trip reports. While wildflowers were a positive component in overall hiker satisfaction, other non-seasonal trail experiences also had positive effects. In all, a shifting wildflower season that is less accessible to visitors could alter perceptions of natural areas like Mount Rainier National Park. Countering negative social-ecological impacts could be achieved by highlighting non-seasonal aspects of the visitor experience, or alternatively, communicating the altered timing of the peak wildflower season while also increasing accessibility during this time. Such actions likely require partnerships between managers of natural areas, interpretive staff, and scientists that study seasonal phenomena of recreational interest.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84602938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Risk-induced trait response in planktonic larvae is altered under an acidified scenario 酸化环境下浮游生物幼虫风险诱导的性状反应发生了改变
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100040
J.C.F. Pardo , A.L. Arvigo , C.A. Miyai , T.M. Costa
{"title":"Risk-induced trait response in planktonic larvae is altered under an acidified scenario","authors":"J.C.F. Pardo ,&nbsp;A.L. Arvigo ,&nbsp;C.A. Miyai ,&nbsp;T.M. Costa","doi":"10.1016/j.ecochg.2021.100040","DOIUrl":"10.1016/j.ecochg.2021.100040","url":null,"abstract":"<div><p>Our changing climate is affecting predator-prey interactions in different ways. Increasing atmospheric CO<sub>2</sub> is acidifying the ocean and disrupting the chemosensation of several species. Here, we evaluated a risk-induced trait response to a potential predator under an acidified scenario. Using planktonic crab larvae as a prey model, we first analysed their swimming avoidance response to different potential fish predators and conspecific odours. Prey intensified their avoidance response to conspecific and predator odours, but not to all predators, with no maternal effect. Then, larvae were exposed to a responsive predator odour under a predicted acidified scenario. A similar response was observed for both saltwater and predator odour under low pH conditions. Thus, acidification seems to affect the chemosensation of planktonic larvae, leading them to not distinguish between a non-harmful stimulus and a potential predator and potentially bringing a cascade of ecological impairments.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100040"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266690052100040X/pdfft?md5=78a6d2da06e44b6fddee36d58844363d&pid=1-s2.0-S266690052100040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77469288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can camera traps be used to measure climate change induced alterations of the activity patterns of elusive terrestrial vertebrates? 相机陷阱可以用来测量气候变化引起的难以捉摸的陆生脊椎动物活动模式的变化吗?
Climate Change Ecology Pub Date : 2021-12-01 DOI: 10.1016/j.ecochg.2021.100020
Richard Buchholz , Jessica Stamn , Sufia Akter Neha
{"title":"Can camera traps be used to measure climate change induced alterations of the activity patterns of elusive terrestrial vertebrates?","authors":"Richard Buchholz ,&nbsp;Jessica Stamn ,&nbsp;Sufia Akter Neha","doi":"10.1016/j.ecochg.2021.100020","DOIUrl":"10.1016/j.ecochg.2021.100020","url":null,"abstract":"<div><p>Climate change will accelerate the extinction rate of wildlife species in the Anthropocene. Identifying which species exhibit the capacity to be flexible in their activity patterns to avoid heat stress will help direct conservation effort to those species that lack resilience. We propose a framework for using photo capture data sets from camera trapping surveys to make conservation management decisions based on a combination of population trends and activity pattern shifts. After summarizing the basic design of typical camera trap surveys, we conduct a literature review of camera-trap-based activity pattern studies for select large tropical forest mammals. Based on our literature review we identified problems with data form and availability, data capture and image sampling, and sampling area and period, which may impede the application of camera trap technology to investigate behavioral resilience to climate warming. We conclude with eight important research questions that must be answered before our monitoring and management framework could be adopted to guide conservation efforts for large tropical mammals.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100020"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84286803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信