Jochen Zehfuß, Lisa Sander, Peter Schaumann, Patrick Meyer
{"title":"Fire design approach for modern vehicles with combustion or electrical engine","authors":"Jochen Zehfuß, Lisa Sander, Peter Schaumann, Patrick Meyer","doi":"10.1002/cend.202300011","DOIUrl":"https://doi.org/10.1002/cend.202300011","url":null,"abstract":"<p>Due to climate changes and environmental considerations, the current transportation changes to modern vehicles with different vehicles models and engine types. Especially vehicles with alternative types of drive, such as electrical vehicles, are increasing. This raises the question of whether modern vehicles, such as electric vehicles, lead to an increased fire risk as well as an increased heat release rate (HRR). In this article, a new fire design approach for modern vehicles is presented to evaluate the fire risk of electric vehicles compared to vehicles with combustion engines with respect to the fire resistance of the structural elements in open car parks. For this purpose, HRRs of different vehicles are analyzed and an approximated approach for modern vehicles is derived. The methodology can be used for performance-based design, where the HRR plays a fundamental role. Furthermore, modeling approaches of the vehicle dimensions are presented, which are based on statistical data of the German Federal Motor Transport Authority. The vehicle dimensions are used to determine the fire spread time between vehicles using a parameter study. Based on the statistical data analyses and the parameter studies, this article provides a new fire design approach for modern vehicles in fire.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 3-4","pages":"56-64"},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202300011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50118692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of calculation models for flexural capacity of RC beams strengthened with TRC in China and Germany","authors":"Ronghua Xu, Manfred Curbach","doi":"10.1002/cend.202100057","DOIUrl":"https://doi.org/10.1002/cend.202100057","url":null,"abstract":"<p>The new innovative composite material textile reinforced concrete (TRC) has been intensively investigated in Germany since the end 1990s. It has become increasingly important in the construction industry. Compared with conventional steel reinforcement, TRC has advantages such as higher load-bearing capacity, higher strength-to-weight ratio, better ductility, and non-corrosive behavior. This made them a subject of extensive research and diverse applications both nationally and internationally. In 2004, Xu et al. started research on bond properties of TRC in China in cooperation with Hans-Wolf Reinhardt et al. from the University of Stuttgart in Germany. Since then, there have been numerous researches on TRC in China. This article introduces a calculation method for the flexural capacity of reinforced concrete (RC) beams strengthened with TRC in China. For comparison, the dimensioning procedure in Germany is also presented. Subsequently, the two models are compared with each other in a case study. Both models in China and Germany have the same mathematical background and also provide similar results. However, they have some differences in definitions of material characteristics (e.g., design concrete compressive strength, strain, and stress distribution) and consideration of the damage resulting from the preloading stage.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 3-4","pages":"46-55"},"PeriodicalIF":0.0,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202100057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50154580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of water saturation on the compressive strength of concrete under high strain rates","authors":"Oliver Mosig, Birgit Beckmann, Manfred Curbach","doi":"10.1002/cend.202200015","DOIUrl":"https://doi.org/10.1002/cend.202200015","url":null,"abstract":"<p>In this study, the influence of different water saturation achieved by different storage conditions on the static and dynamic compressive strength of three different concretes were investigated. The specimens were first dried then water-saturated and tested both under static and impact loading. The impact tests were carried out in a split Hopkinson bar. Depending on the concrete strength class, increases in the compressive strength of 200%–300% at strain rates in the range of 90–160 1/s were observed. Compared to storage under ambient conditions, the compressive strength decreases as a result of drying due to microcrack formation. Furthermore, the concretes compressive strengths of water-saturated specimens decrease compared to dry specimens. This decrease was observed under both static and impact loading and is independent of the strain rate. The failure of the dry specimens was more explosive with an increased number of cracks compared to water-saturated specimens.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 3-4","pages":"39-45"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202200015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50143555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wolfgang Lieske, Rowena Verst, Kent von Maubeuge, Torsten Wichtmann
{"title":"A brief introduction to polymers and concepts of polymer modification of bentonite for barrier applications","authors":"Wolfgang Lieske, Rowena Verst, Kent von Maubeuge, Torsten Wichtmann","doi":"10.1002/cend.202200019","DOIUrl":"https://doi.org/10.1002/cend.202200019","url":null,"abstract":"<p>Polymer-modified bentonite has reached significant attention in recent years, as polymers have been found to increase the resistance of clay barriers to detrimental environmental conditions. Studies on polymer modification of clays for barriers, in most cases, address a specific bentonite with a specific means of modification based on a specific polymer product. The term polymer, however, generally describes a broad category of macromolecules able to create a wide range of possible properties of the modified clay. This article reviews the basics of polymer modification of clays for use in hydraulic barriers to provide a general basis for comparison and design of different modification products and methods. Basics of both primary material categories, that is, polymer and clay, are presented, followed by possible polymer–clay interactions related to polymer charge properties and structure. Possible enhancements associated with polymer modification, but also open questions are addressed.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 1-2","pages":"25-35"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202200019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50136918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volkan Özdal, Muhammed Maraşli, Husnu Gerengi, Kader Dikmen
{"title":"Corrosion behavior of embedded pad hook in glass fiber reinforced concrete","authors":"Volkan Özdal, Muhammed Maraşli, Husnu Gerengi, Kader Dikmen","doi":"10.1002/cend.202200012","DOIUrl":"https://doi.org/10.1002/cend.202200012","url":null,"abstract":"<p>Glass fiber reinforced concrete (GFRC) comprises of hydration products of cement or cement plus sand, and glass fibers which take part in the concrete as reinforcement characteristics. GFRC has been used for over 50 years in several construction elements, such as facade panels, decorative no recoverable formwork, and other products. However, various anchor elements and pad hooks are needed to attach large or small parts made of GFRC panels to the main structure of the buildings. The corrosion rate of embedded metal fasteners over time is related to the water impermeability properties of the GFRC elements. In this study, corrosion of an electro galvanized pad hook embedded in 10–20 mm of the GFRC panel was investigated as a result of the salt spray test performed in accordance with ASTM B 117 standards. At the end of the experiment, the embedded pad hook was taken from the GFRC and analyzed by scanning electron microscopy, energy-dispersive spectroscopy methods. The results showed that the embedded pad hook in the GFRC, which was examined in the test procedures comply with the TS EN 12467 standards, was not corroded by 120-h test carried out in accordance with ASTM B 117 standards.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 1-2","pages":"18-24"},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50136919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Location-specific target load level and object-specific load models for recalculation based on structural monitoring","authors":"Nico Steffens, Karsten Geißler","doi":"10.1002/cend.202200023","DOIUrl":"https://doi.org/10.1002/cend.202200023","url":null,"abstract":"<p>When evaluating existing bridges, supporting structural monitoring is increasingly being used in order to obtain the stresses in the structure more realistically than purely mathematically and to calibrate the calculation model. The question of how the additional information obtained through measurements have to be taken into account within the recalculation, including its safety concept, is currently still normatively unclear. On the load side, this can be done through the modified definition of the target load level or, alternatively, through object-specific load models for load-bearing capacity and fatigue to map the actual traffic. Furthermore, on the basis of the measurement data, the necessary safety factors can be justified, also taking into account future traffic developments, while maintaining the normatively required level of reliability.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"5 1-2","pages":"3-17"},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50141587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of object-specific traffic-load-models for existing road bridges based on traffic data","authors":"Ursula Freundt, Sebastian Böning, Eberhard Pelke","doi":"10.1002/cend.202200022","DOIUrl":"10.1002/cend.202200022","url":null,"abstract":"<p>For an assessment of the necessity, the efficiency and the prioritization of repair and upgrading measures for bridges, object-specific knowledge of structural stresses and structural conditions is indispensable. From the identification of traffic occupancy (quantity and quality) and the analysis of the structural reactions, statements on the current load-bearing capacity of an existing bridge will derived. A necessary data basis is the traffic data of the real traffic determined for the specific bridge.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"4 5-6","pages":"174-181"},"PeriodicalIF":0.0,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85398413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic topology optimization for sequential additive manufacturing including structural self-weight","authors":"Miriam Kick, Dustin R. Jantos, Philipp Junker","doi":"10.1002/cend.202200007","DOIUrl":"10.1002/cend.202200007","url":null,"abstract":"<p>Topology optimization and additive manufacturing complement one another where the first one results in possibly complex structures, and the second one allows for manufacturing of those. For computing optimized components that also fit to the manufacturing limits, the building processes need to be accounted for already during the optimization process. A special characteristic of the additive manufacturing process is the step-by-step manufacturing. Herein, constructing large-scale structures, as for example buildings or bridges, by assembling pre-produced segments can also be considered as additive manufacturing. Especially, a design which also carries the manufacturing or assembling machine, as for example cranes or robots, on different positions during manufacturing is of interest. Therefore, we extend the established thermodynamic topology optimization for a sequential optimization process which considers changing manufacturing loads under structural self-weight.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"4 5-6","pages":"162-173"},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202200007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87800924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Zdanowicz, Birgit Beckmann, Steffen Marx
{"title":"Distributed strain measurements in thin expansive concrete slabs with biaxial textile reinforcement","authors":"Katarzyna Zdanowicz, Birgit Beckmann, Steffen Marx","doi":"10.1002/cend.202200002","DOIUrl":"10.1002/cend.202200002","url":null,"abstract":"<p>The objective of the paper is to analyze the shrinkage and expansion strain development in thin slabs made of expansive concrete and reinforced with carbon textile reinforcement. The symmetrical textile reinforcement grid provided a biaxial restraint for the concrete shrinkage and expansion. Strains of the slabs were measured with distributed fiber optic sensors (DFOS) in both directions so that a 2D visualization of their distribution can be presented and analyzed. Parallel, standard restrained expansion tests (RET) were conducted to assess the expansive concrete mixture and large-scale beam specimens with uniaxial steel reinforcement were also equipped with DFOS and analyzed. This study aimed to compare the strains in uniaxially restrained elements with steel reinforcement and biaxially restrained textile reinforced concrete elements, in order to assess to what extent the results of the standard RET can be used for evaluation of textile reinforced concrete members.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"4 5-6","pages":"154-161"},"PeriodicalIF":0.0,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cend.202200002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75120704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The new approval for the sustainable strengthening of existing structures with carbon reinforced concrete","authors":"Maximilian May, Alexander Schumann, Sebastian May","doi":"10.1002/cend.202100052","DOIUrl":"10.1002/cend.202100052","url":null,"abstract":"<p>The latest global events have shown that climate protection belongs to the biggest current issues of today. In order to initiate the change that is urgently needed, future-oriented processes are required. The excessive use of resources and the associated CO<sub>2</sub> emissions in the construction sector have reached levels that are harmful to the environment and will burden the future generations. Furthermore, a worrisome trend has emerged in the construction industry in recent years. Instead of preserving old and existing building structures, demolition and replacement construction is preferred. Environmental aspects or the historical value of monuments and listed buildings play no role, even though these are essential considerations of our time! How can we put an end to the waste of resources and destruction of local building history? With new and innovative materials—such as the high-performance composite material carbon reinforced concrete, especially in the field of renovation and strengthening of existing structures. A new and improved approval enables to strengthen structures more efficiently and therefore, to save material. As a result, buildings are not only protected from demolition, but also remain being used sustainably.</p>","PeriodicalId":100248,"journal":{"name":"Civil Engineering Design","volume":"4 1-3","pages":"72-78"},"PeriodicalIF":0.0,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83817977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}