R. Vigneswaran
{"title":"Improving Rates of Convergence of Iterative Schemes for Implicit Runge-Kutta Methods","authors":"R. Vigneswaran","doi":"10.1002/anac.200310029","DOIUrl":"10.1002/anac.200310029","url":null,"abstract":"<p>Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an <i>s</i>-stage Runge-Kutta method, each step of the iteration still requires <i>s</i> function evaluations but consists of <i>r</i>(><i>s</i>) sub-steps. Improved convergence rate was obtained for the case <i>r</i> = <i>s</i> + 1 only. This scheme is investigated here for the case <i>r</i> = <i>ks</i>, <i>k</i> = 2, 3, …, and superlinear convergence is obtained in the limit <i>k</i>→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"327-338"},"PeriodicalIF":0.0,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77199398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2