具有任意阶中心空间离散的Leapfrog-Euler格式的稳定性条件

Olga Shishkina, Claus Wagner
{"title":"具有任意阶中心空间离散的Leapfrog-Euler格式的稳定性条件","authors":"Olga Shishkina,&nbsp;Claus Wagner","doi":"10.1002/anac.200310028","DOIUrl":null,"url":null,"abstract":"<p>In this paper a sufficient condition (Theorem 2.3) for the von Neumann stability of the Leapfrog-Euler scheme, which uses central spatial discretization of <i>any order</i> for 3D convection-diffusion equation, is derived in terms of the Courant and the diffusion numbers and the coefficients of approximation schemes. In the case of the second order differencing this condition becomes the necessary condition for the stability. Some particular sufficient conditions for the stability of the second and the fourth order schemes are also derived. A comparison of the results, which were obtained applying the derived stability conditions to compute the time step in the direct numerical simulations (DNS) of turbulent pipe flow with the help of the second and the fourth order schemes, is presented. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"315-326"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310028","citationCount":"21","resultStr":"{\"title\":\"Stability conditions for the Leapfrog-Euler scheme with central spatial discretization of any order\",\"authors\":\"Olga Shishkina,&nbsp;Claus Wagner\",\"doi\":\"10.1002/anac.200310028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper a sufficient condition (Theorem 2.3) for the von Neumann stability of the Leapfrog-Euler scheme, which uses central spatial discretization of <i>any order</i> for 3D convection-diffusion equation, is derived in terms of the Courant and the diffusion numbers and the coefficients of approximation schemes. In the case of the second order differencing this condition becomes the necessary condition for the stability. Some particular sufficient conditions for the stability of the second and the fourth order schemes are also derived. A comparison of the results, which were obtained applying the derived stability conditions to compute the time step in the direct numerical simulations (DNS) of turbulent pipe flow with the help of the second and the fourth order schemes, is presented. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"315-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310028\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

本文利用库朗数、扩散数和近似格式的系数,导出了采用任意阶中心空间离散的三维对流扩散方程的Leapfrog-Euler格式的von Neumann稳定性的充分条件(定理2.3)。在二阶差分的情况下,这个条件成为稳定性的必要条件。并给出了二阶和四阶格式稳定性的一些特殊充分条件。本文给出了用二阶格式和四阶格式直接数值模拟湍流管道流动的稳定性条件计算时间步长的结果。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability conditions for the Leapfrog-Euler scheme with central spatial discretization of any order

In this paper a sufficient condition (Theorem 2.3) for the von Neumann stability of the Leapfrog-Euler scheme, which uses central spatial discretization of any order for 3D convection-diffusion equation, is derived in terms of the Courant and the diffusion numbers and the coefficients of approximation schemes. In the case of the second order differencing this condition becomes the necessary condition for the stability. Some particular sufficient conditions for the stability of the second and the fourth order schemes are also derived. A comparison of the results, which were obtained applying the derived stability conditions to compute the time step in the direct numerical simulations (DNS) of turbulent pipe flow with the help of the second and the fourth order schemes, is presented. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信