改进隐式龙格-库塔方法迭代格式的收敛速度

R. Vigneswaran
{"title":"改进隐式龙格-库塔方法迭代格式的收敛速度","authors":"R. Vigneswaran","doi":"10.1002/anac.200310029","DOIUrl":null,"url":null,"abstract":"<p>Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an <i>s</i>-stage Runge-Kutta method, each step of the iteration still requires <i>s</i> function evaluations but consists of <i>r</i>(&gt;<i>s</i>) sub-steps. Improved convergence rate was obtained for the case <i>r</i> = <i>s</i> + 1 only. This scheme is investigated here for the case <i>r</i> = <i>ks</i>, <i>k</i> = 2, 3, …, and superlinear convergence is obtained in the limit <i>k</i>→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"327-338"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310029","citationCount":"2","resultStr":"{\"title\":\"Improving Rates of Convergence of Iterative Schemes for Implicit Runge-Kutta Methods\",\"authors\":\"R. Vigneswaran\",\"doi\":\"10.1002/anac.200310029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an <i>s</i>-stage Runge-Kutta method, each step of the iteration still requires <i>s</i> function evaluations but consists of <i>r</i>(&gt;<i>s</i>) sub-steps. Improved convergence rate was obtained for the case <i>r</i> = <i>s</i> + 1 only. This scheme is investigated here for the case <i>r</i> = <i>ks</i>, <i>k</i> = 2, 3, …, and superlinear convergence is obtained in the limit <i>k</i>→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"327-338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310029\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了求解隐式龙格-库塔方法中出现的非线性方程,已经提出了各种迭代格式。在一种方案中,当应用于s阶段龙格-库塔方法时,迭代的每一步仍然需要s个函数求值,但由r(>s)个子步骤组成。仅当r = s + 1时,收敛速度有所提高。本文研究了当r = ks, k = 2,3,…时,该格式在极限k→∞处具有超线性收敛性。用高斯方法得到了一些结果,并给出了数值结果。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Rates of Convergence of Iterative Schemes for Implicit Runge-Kutta Methods

Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an s-stage Runge-Kutta method, each step of the iteration still requires s function evaluations but consists of r(>s) sub-steps. Improved convergence rate was obtained for the case r = s + 1 only. This scheme is investigated here for the case r = ks, k = 2, 3, …, and superlinear convergence is obtained in the limit k→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信