R. Vigneswaran
{"title":"改进隐式龙格-库塔方法迭代格式的收敛速度","authors":"R. Vigneswaran","doi":"10.1002/anac.200310029","DOIUrl":null,"url":null,"abstract":"<p>Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an <i>s</i>-stage Runge-Kutta method, each step of the iteration still requires <i>s</i> function evaluations but consists of <i>r</i>(><i>s</i>) sub-steps. Improved convergence rate was obtained for the case <i>r</i> = <i>s</i> + 1 only. This scheme is investigated here for the case <i>r</i> = <i>ks</i>, <i>k</i> = 2, 3, …, and superlinear convergence is obtained in the limit <i>k</i>→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"327-338"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310029","citationCount":"2","resultStr":"{\"title\":\"Improving Rates of Convergence of Iterative Schemes for Implicit Runge-Kutta Methods\",\"authors\":\"R. Vigneswaran\",\"doi\":\"10.1002/anac.200310029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various iterative schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. In one scheme, when applied to an <i>s</i>-stage Runge-Kutta method, each step of the iteration still requires <i>s</i> function evaluations but consists of <i>r</i>(><i>s</i>) sub-steps. Improved convergence rate was obtained for the case <i>r</i> = <i>s</i> + 1 only. This scheme is investigated here for the case <i>r</i> = <i>ks</i>, <i>k</i> = 2, 3, …, and superlinear convergence is obtained in the limit <i>k</i>→∞. Some results are obtained for Gauss methods and numerical results are given. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)</p>\",\"PeriodicalId\":100108,\"journal\":{\"name\":\"Applied Numerical Analysis & Computational Mathematics\",\"volume\":\"1 1\",\"pages\":\"327-338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/anac.200310029\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Analysis & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2