Numerical Solution of the two-dimensional time independent Schrödinger Equation by symplectic schemes†

Th. Monovasilis, Z. Kalogiratou, T. E. Simos
{"title":"Numerical Solution of the two-dimensional time independent Schrödinger Equation by symplectic schemes†","authors":"Th. Monovasilis,&nbsp;Z. Kalogiratou,&nbsp;T. E. Simos","doi":"10.1002/anac.200310016","DOIUrl":null,"url":null,"abstract":"<p>The solution of the two-dimensional time-independent Schrödinger equation is considered by partial discretization. The discretized problem is treated as an ordinary differential equation problem and solved numerically by asymptotically symplectic methods. The problem is then transformed into an algebraic eigenvalue problem involving real, symmetric matrices. The eigenvalues of the two-dimensional harmonic oscillator and the twodimensional Henon-Heils potential are computed by the application of the methods developed. The results are compared with the results produced by full discretization. (© 2004 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</p>","PeriodicalId":100108,"journal":{"name":"Applied Numerical Analysis & Computational Mathematics","volume":"1 1","pages":"195-204"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/anac.200310016","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Analysis & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anac.200310016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The solution of the two-dimensional time-independent Schrödinger equation is considered by partial discretization. The discretized problem is treated as an ordinary differential equation problem and solved numerically by asymptotically symplectic methods. The problem is then transformed into an algebraic eigenvalue problem involving real, symmetric matrices. The eigenvalues of the two-dimensional harmonic oscillator and the twodimensional Henon-Heils potential are computed by the application of the methods developed. The results are compared with the results produced by full discretization. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

二维时间无关Schrödinger方程的辛格式数值解†
采用部分离散方法研究了二维时间无关Schrödinger方程的解。将离散化问题视为常微分方程问题,采用渐近辛方法进行数值求解。然后将该问题转化为涉及实对称矩阵的代数特征值问题。应用所建立的方法计算了二维谐振子的特征值和二维Henon-Heils势。将所得结果与完全离散化所得结果进行了比较。(©2004 WILEY-VCH Verlag GmbH &KGaA公司,Weinheim)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信