Anthropocene Science最新文献

筛选
英文 中文
A Viable World in the Anthropocene: Living Together in the Common Home of Planet Earth 人类世的可行世界:共同生活在地球的共同家园中
Anthropocene Science Pub Date : 2024-08-13 DOI: 10.1007/s44177-024-00075-7
Jürgen Scheffran, Eberhard Schürmann, Roland Weber, Tim Newfields
{"title":"A Viable World in the Anthropocene: Living Together in the Common Home of Planet Earth","authors":"Jürgen Scheffran,&nbsp;Eberhard Schürmann,&nbsp;Roland Weber,&nbsp;Tim Newfields","doi":"10.1007/s44177-024-00075-7","DOIUrl":"10.1007/s44177-024-00075-7","url":null,"abstract":"<div><p>As the world's population continues to surge, the earth's ecological limits are being stretched. Some of the major threats to habitability stem from the pursuit of perpetual economic growth, and power struggles among nations, leading to ecological and social destruction and ongoing crises. A shift toward wiser earth management could enhance habitability through collective strategies within a global political framework. Key components include adopting renewable energy, limiting ecological footprints, fostering clean prosperity, and promoting peaceful coexistence among nations. Our survival hinges on embracing cooperative security and transitioning toward a collective approach to governance, redirecting resources from militarization toward protection of the global commons. This necessitates international collaboration and democratic participation across temporal and spatial scales, facilitated by a UN-led framework. We believe science should play a crucial role in developing common strategies for a viable world, contingent upon decision-makers prioritizing global cooperation over narrow short-term self-interest. Scientists and policymakers can work together, creating more viable futures through international cooperation and a move away from violence. Moreover, citizens have an important role to play by changing their lifestyles and supporting measures mentioned in this paper.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"131 - 142"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00075-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cropping System Intensification: Implications on Food Security and Environmental Sustainability in India 种植系统集约化:对印度粮食安全和环境可持续性的影响
Anthropocene Science Pub Date : 2024-08-13 DOI: 10.1007/s44177-024-00078-4
Devideen Yadav, Subhash Babu, Dinesh Kumar Yadav, Anita Kumawat, Deepak Singh, Ajay Kumar Yadav, Sanjay Singh Rathore, Raghavendra Singh, Neeshu Joshi, Rajendra Kumar Yadav, Anup Das
{"title":"Cropping System Intensification: Implications on Food Security and Environmental Sustainability in India","authors":"Devideen Yadav,&nbsp;Subhash Babu,&nbsp;Dinesh Kumar Yadav,&nbsp;Anita Kumawat,&nbsp;Deepak Singh,&nbsp;Ajay Kumar Yadav,&nbsp;Sanjay Singh Rathore,&nbsp;Raghavendra Singh,&nbsp;Neeshu Joshi,&nbsp;Rajendra Kumar Yadav,&nbsp;Anup Das","doi":"10.1007/s44177-024-00078-4","DOIUrl":"10.1007/s44177-024-00078-4","url":null,"abstract":"<div><p>The study aims to advance the understanding of different stakeholders  about the sustainable intensification in India by assessing current cropping systems, analyzing the effects of intensification, comparing traditional and intensified systems, suggesting alternative cropping systems, and providing evidence-based policy recommendations to promote environmentally responsible agricultural practices. Globally, agroecosystems face serious environmental issues, which poses a significant challenge to achieving human food security. The world population is increasing at the rate of 1.3% while per capita effective cultivated land decreases at the rate of 0.55% per annum. The task is much more daunting in South Asia, especially in India, where annual population growth is ~2%. Hence, there is minimal scope to expand cropland to accommodate the food requirement of ever-increasing population. So, there is a need to increase the cropping frequency on the given piece of land for a definite period in sustainable manner. Intensive cropping systems have substantially increased energy use, fertilizer, and other input consumption, which causes environmental degradation and reduces agricultural sustainability. Thus, sustainable intensification is crucial for enhancing farm production, food security, agrobiodiversity, and ecological sustainability in India. Currently, the cropping intensity of India is ~143% this indicates that there is considerable scope to increase the cropping intensity through sustainable intensification, which can potentially cater to the nutritious food requirement of an ever-increasing population without compromising the environmental sustainability. Sustainable intensification is a robust substitution of traditional cropping systems to produce more food with lesser ecological footprints. This review aims to update the information on the areas under dominant cropping systems of India and the impact of cropping system intensification on food production, soil health, environmental quality, and economic returns and suggest alternative cropping systems for enhancing food production and achieving sustainable development goals. The outcome of this article will also be useful for the academicians and policy developers to plan a robust road map for environmentally sound, soil-supportive, and productive agricultural production planning in India. This study will expand the current understanding of the researchers and policy planners, which will backstop the cropping system research and planning in the country to achieve India’s Bonn challenges and COP-26 commitments besides achieving environmental sustainability, zero hunger, and cleaner production targets.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"1 - 22"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00078-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome Bioprospecting for Sustainable Agrobiome and Circular Bioeconomy 微生物组生物勘探促进可持续农业生物组和循环生物经济
Anthropocene Science Pub Date : 2024-07-29 DOI: 10.1007/s44177-024-00077-5
Dhananjaya Pratap Singh
{"title":"Microbiome Bioprospecting for Sustainable Agrobiome and Circular Bioeconomy","authors":"Dhananjaya Pratap Singh","doi":"10.1007/s44177-024-00077-5","DOIUrl":"10.1007/s44177-024-00077-5","url":null,"abstract":"<div><p>The plant–soil microbiome, comprising diverse microbial communities, holds immense potential for transforming agricultural practices and addressing climate challenges. Understanding and harnessing these microbial interactions can enhance soil and plant health, improve resource-use efficiency, and boost crop productivity. In this article, I have discussed the critical role of microbiome bioprospecting in advancing sustainable agriculture and the circular bioeconomy. The multifaceted benefits of microbiome research, including its implications for human health, ecosystem functioning, and environmental remediation, were presented. I have highlighted various strategies for microbiome manipulation and their potential applications in sustainable agrobiome management and examined the connections between microbiome bioprospecting and circular bioeconomy, exploring areas such as soil ecosystem enrichment, biomass valorization, bioremediation, biorefinery processes, and the development of microbial inoculants and biopesticides. The direct benefits of microbiome-enriched soils for farming communities are outlined, emphasizing increased productivity, reduced input costs, and new market opportunities. Further, I have concluded by underscoring the transformative potential of microbiome research in driving sustainable agricultural practices and fostering a circular bioeconomy. It calls for interdisciplinary collaboration and continued research to fully leverage microbial communities for innovative applications in agriculture and beyond, paving the way for a more sustainable and resource-efficient future in food production and environmental stewardship.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"113 - 121"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro- and Nanoplastic Pollution in the Anthropocene: Understanding and Addressing a Global Crisis 人类世的微塑料和纳米塑料污染:了解和应对全球危机
Anthropocene Science Pub Date : 2024-07-29 DOI: 10.1007/s44177-024-00076-6
Karuna Singh, Kapil Kumar
{"title":"Micro- and Nanoplastic Pollution in the Anthropocene: Understanding and Addressing a Global Crisis","authors":"Karuna Singh,&nbsp;Kapil Kumar","doi":"10.1007/s44177-024-00076-6","DOIUrl":"10.1007/s44177-024-00076-6","url":null,"abstract":"<div><p>The Anthropocene, marked by human-driven environmental changes, faces a critical challenge of plastic pollution. This global issue highlights the extensive impact humans have on the environment, exemplifying the era’s defining characteristics. In the contemporary world, the issue of plastic pollution has escalated into a formidable environmental crisis, posing severe threats to ecosystems, wildlife, and human health. The ubiquity and persistence of plastic in the environment have raised concerns globally, prompting urgent calls for sustainable solutions. This article discusses the environmental threats posed by plastic pollution, evaluates current mitigation efforts, and explores the path forward to a plastic-free planet.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"143 - 149"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Renewable Energy, Green Finance, and Carbon Emission on Economic Growth: Perspective from Newly Industrialized Economies 可再生能源、绿色金融和碳排放对经济增长的影响:新兴工业化经济体的视角
Anthropocene Science Pub Date : 2024-07-29 DOI: 10.1007/s44177-024-00079-3
Agyemang Kwasi Sampene, Takyi Kwabena Nsiah, John Wiredu
{"title":"The Impact of Renewable Energy, Green Finance, and Carbon Emission on Economic Growth: Perspective from Newly Industrialized Economies","authors":"Agyemang Kwasi Sampene,&nbsp;Takyi Kwabena Nsiah,&nbsp;John Wiredu","doi":"10.1007/s44177-024-00079-3","DOIUrl":"10.1007/s44177-024-00079-3","url":null,"abstract":"<div><p>This research assesses the dynamic affiliation among carbon emission, green finance, eco-innovation, international trade, digitalization, and cleaner energy and economic progress among the ten industrialized nations, namely Indonesia, Thailand, South Africa, Turkey, Philippines, Malaysia, India, Mexico, China, and Brazil, over the period 1990–2020. Utilizing a panel dataset, this research employs econometric approaches comprising of common correlated effects mean group (CCEG) and augmented mean group (AMG) to analyze the effects comprehensively. The results of this investigation reveal several noteworthy findings. Carbon emissions consistently adversely influence economic growth, underscoring the detrimental impact of environmental pollution on economic development. In contrast, eco-innovation, green finance, international trade, digitalization, and renewable energy have been discovered to impact economic growth significantly. This underscores the significance of investing in innovation that promotes environmental sustainability to drive economic development. This research offers pertinent knowledge regarding the interplay of environmental and economic indicators within the context of industrialized nations. By reducing carbon footprints and fostering sustainable economic practices, the research underscores the necessity for integrating green finance and renewable energy to achieve long-term ecological balance and economic resilience.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"95 - 112"},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00079-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141796620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecosystem Health Assessment in India for Mainstreaming Global Biodiversity Framework Headline Indicator and Prioritising Conservation Action 印度生态系统健康评估:将全球生物多样性框架标题指标纳入主流并确定保护行动的优先次序
Anthropocene Science Pub Date : 2024-07-25 DOI: 10.1007/s44177-024-00074-8
Shalini Dhyani, Deepu Sivadas, Rajiv Chaturvedi, Amrita Neelakantan, Sonali Ghosh, Sarala Khaling, Simran Sharma, Dhritiman Das, Rajarshi Dasgupta
{"title":"Ecosystem Health Assessment in India for Mainstreaming Global Biodiversity Framework Headline Indicator and Prioritising Conservation Action","authors":"Shalini Dhyani,&nbsp;Deepu Sivadas,&nbsp;Rajiv Chaturvedi,&nbsp;Amrita Neelakantan,&nbsp;Sonali Ghosh,&nbsp;Sarala Khaling,&nbsp;Simran Sharma,&nbsp;Dhritiman Das,&nbsp;Rajarshi Dasgupta","doi":"10.1007/s44177-024-00074-8","DOIUrl":"10.1007/s44177-024-00074-8","url":null,"abstract":"<div><p>With the recently adopted Global Biodiversity Framework (GBF), the significance of ecosystem health and the need for increasing the protected area/other effective area-based conservation measures (OECM) coverage has been reiterated. Ecosystem health assessment or Red Listing of Ecosystems is the headline indicator for target A of GBF. The indicators listed in the IUCN Red Listing of Ecosystems (RLE) have been adopted to monitor the important targets under the Global Biodiversity Framework. Globally, 4279 ecosystems have been assessed using IUCN RLE, and immense potential exists to study the indicators to monitor and classify the health of Indian ecosystems, especially high conservation-value ecosystems. The work presented here synthesises the analyses of the pertinent current global trends in this domain to plan a suitable decentralised approach for assessing ecosystems in India that will be required to be included in the upcoming National Biodiversity Strategy and Action Plan (NBSAPs) as per GBF.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"122 - 130"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141804516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil Carbon Sequestration and Agronomic Productivity as Influenced by the Long-Term Organic and Inorganic Fertilisation Under the Upland Rice–Wheat System in Vertisols of Central India 印度中部椎体土质高地水稻-小麦系统中长期有机和无机施肥对土壤碳吸收和农艺生产力的影响
Anthropocene Science Pub Date : 2024-07-19 DOI: 10.1007/s44177-024-00072-w
Ch. Srinivasarao, Sumanta Kundu, D. P. Dubey, Rajiv Dubey, S. Rakesh, Rattan Lal, P. C. Abhilash, J. V. N. S. Prasad, G. Pratibha, Somasundaram Jayaraman, K. Mrunalini, K. A. Gopinath, Anil K. Singh, G. K. Dinesh, G. Mohan Naidu, Pankaj K. Singh, Kirttiranjan Baral, Rajbir Singh
{"title":"Soil Carbon Sequestration and Agronomic Productivity as Influenced by the Long-Term Organic and Inorganic Fertilisation Under the Upland Rice–Wheat System in Vertisols of Central India","authors":"Ch. Srinivasarao,&nbsp;Sumanta Kundu,&nbsp;D. P. Dubey,&nbsp;Rajiv Dubey,&nbsp;S. Rakesh,&nbsp;Rattan Lal,&nbsp;P. C. Abhilash,&nbsp;J. V. N. S. Prasad,&nbsp;G. Pratibha,&nbsp;Somasundaram Jayaraman,&nbsp;K. Mrunalini,&nbsp;K. A. Gopinath,&nbsp;Anil K. Singh,&nbsp;G. K. Dinesh,&nbsp;G. Mohan Naidu,&nbsp;Pankaj K. Singh,&nbsp;Kirttiranjan Baral,&nbsp;Rajbir Singh","doi":"10.1007/s44177-024-00072-w","DOIUrl":"10.1007/s44177-024-00072-w","url":null,"abstract":"<div><p>Storage of anthropogenic carbon dioxide (CO<sub>2</sub>) emissions in the soil profile is a current global challenge. Despite greater attention to research investigating the buildup of soil organic carbon (SOC) in the surface soil layer (0‒0.2 m), information on C sequestration rates in sub-soil layers (0‒1.0 m) is scanty in tropical upland crop production systems. We investigated the relationship of inputs of biomass C and C sequestration rates with the sustainability yield index (SYI) of the upland rice-based system in Vertisols of Central India. A randomised block design (RBD) was followed with five treatments viz.,<i> T</i>1 = control; <i>T</i>2 = 100% recommended dose of nitrogen (RDN) (fertiliser) (40 kg N each for rice and wheat); <i>T</i>3 = 100% RDN (compost @ 8 Mg ha<sup>−1</sup>); <i>T</i>4 = 50% RDN (fertiliser) + 50% RDN (compost); <i>T</i>5 = 50% RDN (fertiliser) + 50% RDN (compost) + <i>Azotobacter</i> (2 kg ha<sup>−1</sup>). Changes in soil C stock under each treatment were measured for five depths (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1.0 m). Results of long-term (1998–2011) experiments highlighted that the total system productivity could be improved by regular inputs of compost. Maximum crop yields of rice and wheat (1829 and 2066 kg ha<sup>−1</sup>, respectively) were obtained when 100% N was supplied through compost. However, the sustainability of the rice–wheat cropping system was improved with integrated nutrient management (INM) (<i>T</i>4). Mean SOC concentration increased from 4.50 to 6.03 g kg<sup>−1</sup> over control, and 19.2 Mg C ha<sup>−1</sup> was sequestered out of the cumulative total C input of 46.80 Mg C ha<sup>−1</sup> in the organic treatment (<i>T</i>3). A strong correlation (<i>R</i><sup>2</sup> ≥ 0.96, <i>P</i> &lt; 0.05) was found between total C inputs and profile C content, stock, and sequestration rate. The soil C sequestration efficiency was 67.9% for the rice–wheat cropping system. A critical C input of 1.30 Mg C ha<sup>−1</sup> yr<sup>−1</sup> was needed to maintain the SOC at the antecedent level for Vertisols. Thus, the combined application of organic amendments with fertilisers is paramount to sustain the productivity of the upland rice–wheat system and enhance SOC sequestration rates in sub-soil layers in Vertisols in sub-humid tropics.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"81 - 94"},"PeriodicalIF":0.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00072-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Afforestation Schemes Are Driven by Urbanisation and Tree Outside Forest: A Case Study of India 造林计划受城市化和林外树木的驱动:印度案例研究
Anthropocene Science Pub Date : 2024-07-16 DOI: 10.1007/s44177-024-00073-9
Harsh Yadav, Takehiro Sasaki
{"title":"Afforestation Schemes Are Driven by Urbanisation and Tree Outside Forest: A Case Study of India","authors":"Harsh Yadav,&nbsp;Takehiro Sasaki","doi":"10.1007/s44177-024-00073-9","DOIUrl":"10.1007/s44177-024-00073-9","url":null,"abstract":"<div><p>Increasing urbanisation acts as a contributor to deforestation. Afforestation schemes are one of the preferred approaches to the recovery of forest cover. However, the relationship between urbanisation and afforestation schemes has not yet been explored. Taking India as a case study, the study used secondary data from Indian State of Forest Report (ISFR), Census of India and state/UT forest department webpages. Data from these sources were used to investigate which factors are related to the number of afforestation schemes adopted in the Indian states and Union Territories (UTs). The study found 151 afforestation schemes in Indian states/UTs, with states such as Odisha (17) and Uttar Pradesh (15) having the largest number of schemes. A strong relationship was found between the number of afforestation schemes with the state’s urbanisation and Tree Outside Forests (TOF) signifying them as drivers of number of afforestation schemes in Indian states/UTs. Only 49 tree species (13 introduced) constituted the dominant urban tree species. States with the least number of dominating native species had more than five schemes and 50% urban coverage of just five trees. Urbanisation and urban coverage of trees were influential factors in States/UTs with 10 schemes. This study highlighted the need to consider state-specific afforestation factors such as land use changes and not generalising based on only urbanisation while formulating afforestation schemes to achieve the greening objectives.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"150 - 156"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon Stocks of Forests and Tree Plantations Along an Elevational Gradient in the Western Ghats: Does Plant Diversity Impact Forest Carbon Stocks? 西高止山脉海拔梯度森林和植树造林的碳储量:植物多样性会影响森林碳储量吗?
Anthropocene Science Pub Date : 2024-07-12 DOI: 10.1007/s44177-024-00071-x
B. Mohan Kumar, D. Balasubramanian
{"title":"Carbon Stocks of Forests and Tree Plantations Along an Elevational Gradient in the Western Ghats: Does Plant Diversity Impact Forest Carbon Stocks?","authors":"B. Mohan Kumar,&nbsp;D. Balasubramanian","doi":"10.1007/s44177-024-00071-x","DOIUrl":"10.1007/s44177-024-00071-x","url":null,"abstract":"<div><p>Biomass carbon (C) stocks and species richness and diversity are interlinked, and they co-vary along an elevational gradient. To test these hypotheses of inter-connectiveness and covariation in the Western Ghats (peninsular India) context, we enumerated 16 moist forest plots as well as 18 rubber (<i>Hevea brasiliensis</i>) and coconut (<i>Cocos nucifera</i>) plantations each. Our main objectives were to assess the aboveground biomass C (AGB-C) stocks and the association between plant diversity and forest AGB-C stocks along an elevation gradient. Species-specific allometric equations and Ordinary Kriging interpolation were used to predict and map AGB-C and species diversity. AGB-C stocks varied significantly among forest (381.69 ± 25.87 Mg ha<sup>–1</sup>), rubber (73.92 ± 7.76 Mg ha<sup>–1</sup>), and coconut (21.19 ± 1.23 Mg ha<sup>–1</sup>) stands. Forest AGB-C stocks also decreased linearly with increasing elevation. Although rubber and coconut AGB-C declined with elevation, the differences were not significant. The richness and diversity of arboreal species were higher in mid-elevation forests compared to low/high-elevation sites (unimodal pattern). With Simpson’s diversity index ranging from 0.695 to 0.865, Shannon index of 1.445–2.231, and Equitability of 0.883–0.994, our study sites exhibited moderate to high species diversity and encompassed 26 IUCN Red-listed species. Diversity and AGB-C were significantly correlated, indicating that the results support the hypothesis on inter-connectiveness. Overall, the forests at low and mid-elevations showed greater potential for C sequestration and biodiversity conservation, implying the need for adaptive management (designing actions) of these forests to mitigate the impending global climate change and conserve biodiversity.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"63 - 80"},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00071-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141652421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Disturbance on Micro-environment, Soil Properties and Microbial Biomass in Subtropical Broadleaved Forests of Meghalaya, India 干扰对印度梅加拉亚亚热带阔叶林微环境、土壤特性和微生物生物量的影响
Anthropocene Science Pub Date : 2024-07-12 DOI: 10.1007/s44177-024-00070-y
Humayun Samir Ahmed Barbhuyan, Krishna Upadhaya, Gunjana Chaudhury, Aabid Hussain Mir
{"title":"Effect of Disturbance on Micro-environment, Soil Properties and Microbial Biomass in Subtropical Broadleaved Forests of Meghalaya, India","authors":"Humayun Samir Ahmed Barbhuyan,&nbsp;Krishna Upadhaya,&nbsp;Gunjana Chaudhury,&nbsp;Aabid Hussain Mir","doi":"10.1007/s44177-024-00070-y","DOIUrl":"10.1007/s44177-024-00070-y","url":null,"abstract":"<div><p>Disturbance of forest ecosystem causes changes in vegetation structure, micro-environmental conditions, soil properties and microbial biomass. Therefore, an understanding of the role of microbes and its activities in sustaining and regulating the soil fertility in forest ecosystems along a disturbance gradient are necessary. The present study investigates the effects of human disturbances on micro-environmental parameters, soil properties and microbial biomass in subtropical broad leaved forests of Cherrapunjee plateau of Meghalaya, northeast India. The results for micro-environmental parameters (light intensity, relative humidity, air, and soil temperature) varied significantly (p &lt; 0.05) along a disturbance gradient. Disturbance also had a significant effect on soil properties with high values of soil moisture content (SMC, 24.93–25.57%), soil organic carbon (SOC, 5.23–5.60 g/kg), total kjeldahl Nitrogen (TKN, 3.45–3.87 g/kg) and extractable Phosphorous (Ex. P, 4.24–5.12 mg/kg) in low disturbed sites as compared to highly disturbed sites (SMC = 21.01–23.93%; SOC = 4.26–4.53 g/kg; TKN = 2.70–3.35 g/kg; Ex. P = 3.62–3.90 mg/kg). The soil microbial biomass Carbon, Nitrogen and Phosphorous (MBC, MBN and MBP) also varied significantly (p &lt; 0.05) across the disturbance gradient and seasons. It showed a strong correlation with SOC, TKN and Ex. P indicating a close relationship between microbial biomass and the status of the soil nutrient pool. Percentage contribution of MBC to SOC, MBN to TKN and MBP to Ex. P ranged from 1.15 to 1.40%, 1.82–2.43 and 4.91–6.91%, respectively. The present study highlights the complex relationships between disturbance, micro-environmental conditions, soil- properties and -microbial biomass in these forests. Therefore, sustainable practices that minimize disturbances and promote ecosystem restoration require rights-based land-use practices, prioritizing biodiversity conservation, and creating awareness among local communities.</p></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"50 - 62"},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00070-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信