{"title":"Fixed-time neuroadaptive formation control for multiple QUAVs with external disturbance","authors":"Shuai Cheng, Bin Xin, Zhaofeng Du, Jie Chen","doi":"10.1002/adc2.207","DOIUrl":"10.1002/adc2.207","url":null,"abstract":"<p>This paper studies the formation control of multiple quadrotor unmanned aerial vehicle systems (MQUAVSs) with external disturbance. A new adaptive fixed-time cooperative control protocol is designed for MQUAVSs. A fixed-time command filtered compensation control technology is presented to overcome the “explosion of complexity” issue, and a new fixed-time error compensation signal is designed to compensate the filtering error, which improves the convergence speed of the system. Adaptive neural network technology is introduced to deal with unknown nonlinear functions in the system. A fixed-time stability theorem is presented for MQUAVSs to ensure that MQUAVSs can reach the predetermined formation and the formation tracking errors converge to the neighborhood of the origin in a fixed time. Finally, the effectiveness of the proposed method is verified by the formation simulation of MQUAVs.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.207","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141363817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of an artificial neural network and proportional-integral-derivative controller using particle swarm optimization for Boeing 747-400 aircraft pitch control","authors":"Hunachew Moges Mitiku, Ayodeji Olalekan Salau, Estifanos Abeje Sharew","doi":"10.1002/adc2.224","DOIUrl":"10.1002/adc2.224","url":null,"abstract":"<p>This paper presents the design of an artificial neural network (ANN) and proportional integral derivative (PID) controller using particle swarm optimization (PSO) for Boeing 747-400 aircraft pitch control (APC). The combinations of disturbance, open loop unstable and nonlinear dynamics are major problems in a Boeing 747-400 commercial aircraft. This paper investigates the control mechanism of pitch angle control of Boeing 747-400 with small disturbance theory linearization methods and ANN based non-linear controllers. A PID controller is tuned by PSO, whereas the PID is tuned by graphical user interface (GUI) when compared with an ANN controller. The controller for this system was designed using an ANN controller and PID tuned using a recent optimization technique such as the PSO method with integral square error (ISE) as an objective function. A comparative study of the time domain performances of the pitch control of the Boeing 747-400 commercial aircraft was presented. The ANN controller outperformed the PID-PSO and PID-GUI controllers in terms of system performance, including rising time (tr), settling time (ts), percentage overshoot (percent OS), and steady state error, across various elevator deflection angles. Basically, the percentage overshoot and steady state error were 0% and 0 respectively, indicating that the ANN controller achieved an improvement of 100%. Various parameters were compared with the PID-GUI, PID-PSO, and ANN controllers for pitch control of the Boeing 747-400 air craft. The ANN controller architecture comprises of two input neurons, two hidden layer neurons, and one output layer neuron. The simulation was performed using Matlab/Simulink. The results show that the PID-PSO controller was improved by the ANN controller and the performance specifications of the aircraft obtained by the ANN controller were satisfactory.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mukur Gupta, Nitin Gupta, Man Mohan Garg, Ajay Kumar
{"title":"Robust control strategies applicable to DC–DC converter with reliability assessment: A review","authors":"Mukur Gupta, Nitin Gupta, Man Mohan Garg, Ajay Kumar","doi":"10.1002/adc2.217","DOIUrl":"https://doi.org/10.1002/adc2.217","url":null,"abstract":"<p>This paper provides an overview of various control strategies for DC–DC converters along with a brief discussion on various performance indices for evaluating the reliability of designed controller. DC–DC converters are emerging as the fastest-growing interfacing devices in the world because of their emergent applications in almost all domains of engineering. Notably, the non-linear behavior of DC–DC converters offers a perplexing problem in designing a robust controller. A robust controller must ensure proper closed-loop stability with desired performance and reliable control for output voltage regulation in the event of various possible perturbations. This creates the requirement for practically implementable non-linear controllers that can effectively overlook the drawbacks of linear controllers. The prominence of this composition is based on the expansion in tuning techniques of proportional-integral-derivative controller gain parameters using linear strategies and heading towards non-linear strategies by reviewing 196 research papers. The modification in non-linear control strategies in terms of their fundamental features associated with key benefits and limitations are comprehensively reviewed. This study mostly revolves around non-linear internal model control (IMC) strategies for parameter tuning of IMC-based controllers for various order of plants with an improved degree of freedom.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.217","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vehicle vibration test platform structure design and control strategy optimization","authors":"Zhiqiang Xi, Yongzheng Guo, Yiliu Wang, Kui Liu, Haiyang Yang, Zhanzheng Guo, Shuai Zhang","doi":"10.1002/adc2.214","DOIUrl":"https://doi.org/10.1002/adc2.214","url":null,"abstract":"<p>For the needs of vehicle vibration test platform with high precision, large load capacity and fast response, the three-dimensional model design and analysis of vehicle vibration test platform are carried out; in order to improve the motion performance of the platform, a vibration test plat-form control strategy combining hybrid heuristic algorithm and PID control is proposed. Based on the designed 3D model parameters, the single-channel mathematical model of the servo-electric cylinder is derived and a hybrid heuristic algorithm PID optimization model is established to compare and analyze the control performance of the platform with the Ziegler-Nichols method PID. The results show that the step system overshoot is 3.80% and the dynamic performance of the system is significantly improved when the hybrid heuristic algorithm PID control is used. The simulation system model of vehicle vibration test platform control is established, and the operation results show that the platform is closer to the input signal in the spatial position change curve when the hybrid heuristic algorithm PID control is used. Its maximum displacement error is 0.09 mm, and the motion accuracy of the system is improved by 61% compared with the Ziegler-Nichols method PID control.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Zarourati, Mehran Mirshams, Morteza Tayefi
{"title":"Active underactuation fault-tolerant backstepping attitude tracking control of a satellite with interval error constraints","authors":"Mohammad Zarourati, Mehran Mirshams, Morteza Tayefi","doi":"10.1002/adc2.215","DOIUrl":"https://doi.org/10.1002/adc2.215","url":null,"abstract":"<p>Underactuation poses a significant challenge to space mission control and performance. This article investigates the non-linear attitude tracking control problem for a remote sensing satellite underactuated by a reaction wheel (RW) actuator fault. First, a timeline close to the in-orbit reality of an underactuation fault is presented. Then, the fault detection and diagnosis strategy is performed in a finite-time decision window. The failed actuator is excluded from the control loop by forming the proposed reconfiguration window to transition from a 3 RWs configuration to 2 RWs. The underactuation fault-tolerant control is designed according to the active method, where the adaptive robust control law employed for fault-free conditions is switched to the underactuated attitude tracking control (UATC). The structure of UATC is based on kinematic and adaptive backstepping dynamic controllers. The effect of unknown bounded external disturbances is considered with an adaptive estimation term. The asymptotic stability of the closed-loop control system is proved via Lyapunov theory in the presence of parametric uncertainty. Due to the underactuation, a new approach proposed in the prescribed performance function is interval error constraints, which include the pointing accuracy and stability requirements in imaging time intervals. Finally, the results of the multidisciplinary simulation and experimental test confirm the applicability of the underactuation fault-tolerant control.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrical line fault prediction using a novel grey wolf optimization algorithm based on multilayer perceptron","authors":"Yufei Zhang","doi":"10.1002/adc2.213","DOIUrl":"10.1002/adc2.213","url":null,"abstract":"<p>Grey wolf optimization algorithm (GWO) has achieved great results in the optimization of neural network parameters. However, it has some problems such as insufficient precision, poor robustness, weak searching ability and easy to fall into local optimal solution. Therefore, a grey wolf optimization algorithm combining Levy flight and nonlinear inertia weights (LGWO) is proposed in this paper. The combination of Levy flight and nonlinear inertia weight is to improve the search efficiency and solve the problem that the search ability is weak and it is easy to fall into the local optimal solution. In summary, LGWO solves the problems of insufficient precision, poor robustness, weak searching ability and easy to fall into local optimal. This paper uses Congress on Evolutionary Computation benchmark function and combines algorithms with neural network for power line fault classification prediction to verify the effectiveness of each strategy improvement in LGWO and its comparison with other excellent algorithms (sine cosine algorithm, tree seed algorithm, wind driven optimization, and gravitational search algorithm). In the combination of neural networks and optimization algorithms, the accuracy of LGWO has been improved compared to the basic GWO, and LGWO has achieved the best performance in multiple algorithm comparisons.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140664484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lyapunov stability analysis and FIL implementation for boundary-based hybrid controller in boost converter","authors":"Hardik Patel, Ankit Shah","doi":"10.1002/adc2.216","DOIUrl":"10.1002/adc2.216","url":null,"abstract":"<p>This paper presents a comprehensive stability analysis of the boundary-based hybrid control (BBHC) algorithm designed for boost converter. The stability assessment is carried out utilizing multiple Lyapunov functions, addressing both continuous conduction mode (CCM) and discontinuous conduction mode (DCM) operation. The boost converter is modeled as a hybrid automaton to capture its dynamic behavior accurately. Through rigorous Lyapunov stability analysis, this study demonstrates the effectiveness of the BBHC algorithm in ensuring stable operation of the boost converter across various operating modes. Additionally, the proposed control algorithm's validation is conducted using the FPGA-in-the-loop (FIL) technique, highlighting its efficiency and robustness in real-world applications. This research contributes valuable insights into the design and implementation of stable control strategies for boost converter, emphasizing the practical utility of the BBHC algorithm with FIL for enhanced performance and reliability in power electronics systems.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.216","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Concrete structure assembly technology based on 3D intelligent image analysis","authors":"Limei Cao, Xiao Song","doi":"10.1002/adc2.211","DOIUrl":"10.1002/adc2.211","url":null,"abstract":"<p>At present, there is no standard practice for temporary connection of component installation. How to make temporary connections to components more efficient and accurate is the key to the construction of cast-in-place connection parts in concrete prefabricated buildings. In order to improve the assembly technology of concrete structures, this paper combines three-dimensional intelligent image analysis technology for simulation, analyzes and compares several common electronic image stabilization algorithms, discusses the video image stabilization technology based on gray projection method in detail, and gives experimental results. Moreover, this paper analyzes and compares common moving target tracking algorithms, such as feature-based tracking, region matching-based tracking, dynamic contour-based tracking, and 3D model-based tracking. In addition, this paper studies the target tracking algorithm based on the Camshift algorithm, and constructs the assembly model of the intelligent concrete structure with the support of the algorithm. Through experimental verification, it is known that the performance distribution of the concrete structure assembly model based on 3D intelligent image analysis in experimental evaluation is between [81, 89], the experimental study shows that the concrete structure assembly model based on 3D intelligent image analysis can effectively improve the assembly effect of concrete structure.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.211","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140679058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of intelligent behavior analysis software based on speaker identity classification algorithm in microgrid mode","authors":"Weijie Guo","doi":"10.1002/adc2.209","DOIUrl":"10.1002/adc2.209","url":null,"abstract":"<p>Digital technology still has a low level of intelligence in the microgrid mode of teaching behavior analysis, resulting in the traditional manual observation and recording stage still being used for speaker identity classification, and the efficiency of teaching behavior analysis is also low. In response to the above issues, the research is based on the teacher-student analysis method and proposes a dual clustering algorithm based on the general background model Gaussian mixture model for speaker identity classification, thereby realizing the development and design of intelligent behavior analysis software. The research results indicate that the average recall rate of behavior transition points in the classroom teaching discourse corpus of the intelligent behavior analysis software is 89.03%, which is better than traditional analysis methods. Therefore, the intelligent behavior analysis software constructed by the dual clustering algorithm has high effectiveness and practicality. The research proposes a method model and implements intelligent visualization for classroom teaching behavior analysis, improving the efficiency of analyzing current microgrid teaching behavior.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.209","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D localization of wireless sensor IoT nodes based on weighted DV-Hop algorithm","authors":"Kui Zhang, Haihua Cui, Xiaomei Yan","doi":"10.1002/adc2.212","DOIUrl":"10.1002/adc2.212","url":null,"abstract":"<p>With the widespread popularity of smart wearable devices and the rise of emerging Internet of Things applications, such as smart cities, smart homes, and smart cars, the demand for Internet of Things devices is growing. The technology for positioning Internet of Things nodes using traditional wireless sensors only provides approximate location information, which is insufficient for high-precision applications. To achieve accurate sensor node location in a specific area, this study proposes an advanced weighted distance vector jump location algorithm. This paper proposes using optical wireless networks, a new wireless communication technology, to enhance the distance vector jump algorithm. It is considered the core technology in researching the three-dimensional positioning of wireless sensor IoT nodes. The experimental data validated that by comparing with existing positioning algorithms, the improved algorithm significantly improved the location accuracy, and its average orientation error was significantly lower than other algorithms. In three cases where the wireless sensor communication radius was between 10 and 30 m, the average positioning errors of the improved algorithm were 0.363, 0.264, and 0.258, respectively. Compared with the pre improved Distance Vector Hop algorithm, its accuracy has increased by 41.1%, indicating the better positioning performance. Overall, the improved weighted algorithm significantly improves the positioning effect, providing strong technical support for the three-dimensional positioning of wireless sensor Internet of Things nodes.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.212","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}