具有外部干扰的多 QUAV 的固定时间神经自适应编队控制

Shuai Cheng, Bin Xin, Zhaofeng Du, Jie Chen
{"title":"具有外部干扰的多 QUAV 的固定时间神经自适应编队控制","authors":"Shuai Cheng,&nbsp;Bin Xin,&nbsp;Zhaofeng Du,&nbsp;Jie Chen","doi":"10.1002/adc2.207","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the formation control of multiple quadrotor unmanned aerial vehicle systems (MQUAVSs) with external disturbance. A new adaptive fixed-time cooperative control protocol is designed for MQUAVSs. A fixed-time command filtered compensation control technology is presented to overcome the “explosion of complexity” issue, and a new fixed-time error compensation signal is designed to compensate the filtering error, which improves the convergence speed of the system. Adaptive neural network technology is introduced to deal with unknown nonlinear functions in the system. A fixed-time stability theorem is presented for MQUAVSs to ensure that MQUAVSs can reach the predetermined formation and the formation tracking errors converge to the neighborhood of the origin in a fixed time. Finally, the effectiveness of the proposed method is verified by the formation simulation of MQUAVs.</p>","PeriodicalId":100030,"journal":{"name":"Advanced Control for Applications","volume":"6 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.207","citationCount":"0","resultStr":"{\"title\":\"Fixed-time neuroadaptive formation control for multiple QUAVs with external disturbance\",\"authors\":\"Shuai Cheng,&nbsp;Bin Xin,&nbsp;Zhaofeng Du,&nbsp;Jie Chen\",\"doi\":\"10.1002/adc2.207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the formation control of multiple quadrotor unmanned aerial vehicle systems (MQUAVSs) with external disturbance. A new adaptive fixed-time cooperative control protocol is designed for MQUAVSs. A fixed-time command filtered compensation control technology is presented to overcome the “explosion of complexity” issue, and a new fixed-time error compensation signal is designed to compensate the filtering error, which improves the convergence speed of the system. Adaptive neural network technology is introduced to deal with unknown nonlinear functions in the system. A fixed-time stability theorem is presented for MQUAVSs to ensure that MQUAVSs can reach the predetermined formation and the formation tracking errors converge to the neighborhood of the origin in a fixed time. Finally, the effectiveness of the proposed method is verified by the formation simulation of MQUAVs.</p>\",\"PeriodicalId\":100030,\"journal\":{\"name\":\"Advanced Control for Applications\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adc2.207\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Control for Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adc2.207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Control for Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adc2.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有外部干扰的多旋翼无人飞行器系统(MQUAVS)的编队控制。为 MQUAVS 设计了一种新的自适应固定时间协同控制协议。提出了一种固定时间指令滤波补偿控制技术,以克服 "复杂性爆炸 "问题,并设计了一种新的固定时间误差补偿信号来补偿滤波误差,从而提高了系统的收敛速度。引入自适应神经网络技术来处理系统中的未知非线性函数。提出了 MQUAVS 的固定时间稳定性定理,确保 MQUAVS 能在固定时间内到达预定编队,编队跟踪误差收敛到原点附近。最后,通过 MQUAVs 的编队仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fixed-time neuroadaptive formation control for multiple QUAVs with external disturbance

Fixed-time neuroadaptive formation control for multiple QUAVs with external disturbance

This paper studies the formation control of multiple quadrotor unmanned aerial vehicle systems (MQUAVSs) with external disturbance. A new adaptive fixed-time cooperative control protocol is designed for MQUAVSs. A fixed-time command filtered compensation control technology is presented to overcome the “explosion of complexity” issue, and a new fixed-time error compensation signal is designed to compensate the filtering error, which improves the convergence speed of the system. Adaptive neural network technology is introduced to deal with unknown nonlinear functions in the system. A fixed-time stability theorem is presented for MQUAVSs to ensure that MQUAVSs can reach the predetermined formation and the formation tracking errors converge to the neighborhood of the origin in a fixed time. Finally, the effectiveness of the proposed method is verified by the formation simulation of MQUAVs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信