Advanced Agrochem最新文献

筛选
英文 中文
Spray-induced gene silencing in phytopathogen: Mechanisms, applications, and progress 植物病原体的喷雾诱导基因沉默:机理、应用和进展
Advanced Agrochem Pub Date : 2024-06-12 DOI: 10.1016/j.aac.2024.06.001
Li He , Yifan Zhou , Qin Mo , Yanna Huang , Xueming Tang
{"title":"Spray-induced gene silencing in phytopathogen: Mechanisms, applications, and progress","authors":"Li He ,&nbsp;Yifan Zhou ,&nbsp;Qin Mo ,&nbsp;Yanna Huang ,&nbsp;Xueming Tang","doi":"10.1016/j.aac.2024.06.001","DOIUrl":"10.1016/j.aac.2024.06.001","url":null,"abstract":"<div><div>Phytopathogens can continuously cause serious losses worldwide to crop, fruit, and vegetable yields. The excessive use of conventional fungicides in pathogen management has raised severe environmental and health side effects and induced fungicide-resistant pathogen strains. RNA-based spray-induced gene silencing (SIGS) has emerged as an ecologically sustainable pathogen control approach. Here, we introduce the SIGS mechanism in plant pathogens, summarize the application of SIGS in controlling plant pathogens, and highlight the major considerations of SIGS. In addition, we propose the future perspectives of SIGS in crop protection and disease management.</div></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 4","pages":"Pages 289-297"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141412709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing metabolomic approach to study the mode of action of fungicides and corresponding resistance in plant pathogens 利用代谢组学方法研究杀菌剂的作用模式和植物病原体的相应抗药性
Advanced Agrochem Pub Date : 2024-05-31 DOI: 10.1016/j.aac.2024.05.001
Zhaochen Wu , Ziqi Liu , Zhihong Hu , Tingting Wang , Lijie Teng , Tan Dai , Pengfei Liu , Jianjun Hao , Xili Liu
{"title":"Utilizing metabolomic approach to study the mode of action of fungicides and corresponding resistance in plant pathogens","authors":"Zhaochen Wu ,&nbsp;Ziqi Liu ,&nbsp;Zhihong Hu ,&nbsp;Tingting Wang ,&nbsp;Lijie Teng ,&nbsp;Tan Dai ,&nbsp;Pengfei Liu ,&nbsp;Jianjun Hao ,&nbsp;Xili Liu","doi":"10.1016/j.aac.2024.05.001","DOIUrl":"10.1016/j.aac.2024.05.001","url":null,"abstract":"<div><p>Fungicides are an indispensable tool in plant disease control. Various modes of action (MOAs) have been identified in different fungicides to suppress plant pathogens. The combined use of fungicides with distinct MOAs has been recommended to prevent the development of pathogen resistance. In studying MOAs, metabolomics has been proven to be a robust and high-throughput method. Because metabolites are unique and distinct depending on the biological activities of an organism, MOAs can be identified and classified by establishing metabolic fingerprinting and metabolic profiles. Similarly, if fungicide resistance is developed in a pathogen, the metabolome will change, which can be identified. In this review, we have discussed the principles and advanced applications of metabolomics in the study of MOAs and resistance mechanisms of fungicides, and the potential of metabolic data in understanding the interaction between fungicides and pathogens. Challenges are also discussed in the application of metabolomics, improvement of the study on the mechanism of fungicides in their functions against pathogens and advancing the development of novel fungicides.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 3","pages":"Pages 197-205"},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000492/pdfft?md5=358ec1c09071e8212f6f45edbba29929&pid=1-s2.0-S2773237124000492-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIR domain protein-mediated phase separation activates plant immunity TIR 结构域蛋白介导的相分离激活植物免疫力
Advanced Agrochem Pub Date : 2024-05-01 DOI: 10.1016/j.aac.2024.04.003
{"title":"TIR domain protein-mediated phase separation activates plant immunity","authors":"","doi":"10.1016/j.aac.2024.04.003","DOIUrl":"10.1016/j.aac.2024.04.003","url":null,"abstract":"<div><p>We spotlight recent findings from a Nature paper unveiling captivating insights into how substrates such as NAD+ and ATP stimulate the condensation of TIR domain proteins. This process culminates in the formation of a quaternary structural pattern akin to the catalytic arrangement observed in conventional TNL proteins. Consequently, this mechanism enables the production of pivotal signaling molecules crucial for fortifying plant immunity. Expanding on these revelations, we propose the prospect of creating modulatory compounds capable of initiating the phase separation of TIR domain proteins as an innovative approach to enhance plant immunity against pathogenic challenges.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 3","pages":"Pages 183-184"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000467/pdfft?md5=d8b82182ba57c5a5c1f146bbbfdaae98&pid=1-s2.0-S2773237124000467-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis, and insecticidal activity of novel terpenoid ester compounds containing bicyclo[2.2.1] heptane against Aphis gossypii Glover 含有双环[2.2.1]庚烷的新型萜类酯化合物的设计、合成和对格洛弗蚜虫的杀虫活性
Advanced Agrochem Pub Date : 2024-04-24 DOI: 10.1016/j.aac.2024.04.002
Caiyue Liu , Yuelan Yin , Hao Liu , Longfei Yang , Minghui Chen , Ting Ma , Guoqiang Zhang , Chunjuan Wang , Sifeng Zhao , Xiaoqiang Han
{"title":"Design, synthesis, and insecticidal activity of novel terpenoid ester compounds containing bicyclo[2.2.1] heptane against Aphis gossypii Glover","authors":"Caiyue Liu ,&nbsp;Yuelan Yin ,&nbsp;Hao Liu ,&nbsp;Longfei Yang ,&nbsp;Minghui Chen ,&nbsp;Ting Ma ,&nbsp;Guoqiang Zhang ,&nbsp;Chunjuan Wang ,&nbsp;Sifeng Zhao ,&nbsp;Xiaoqiang Han","doi":"10.1016/j.aac.2024.04.002","DOIUrl":"10.1016/j.aac.2024.04.002","url":null,"abstract":"<div><p>To discover novel and efficient compounds against <em>Aphis gossypii</em> Glover, a series of novel terpene ester derivatives containing the structure of bicyclo[2.2.1]heptane were designed and synthesized using tschimganin as the lead compound. Bioactivity assays showed that most tschimganin analogs exhibited moderate to outstanding insecticidal activity against <em>A</em>. <em>gossypii</em>. In particular, compound <strong>56</strong> (LC<sub>50</sub> = 0.28 μg mL<sup>−1</sup>), identified as (1<em>S</em>,2<em>S</em>,4<em>R</em>)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl nicotinate, exhibited the best activity, which was significantly superior to that of imidacloprid (LC<sub>50</sub> = 0.54 μg mL<sup>−1</sup>) and sulfoxaflor (LC<sub>50</sub> = 0.70 μg mL<sup>−1</sup>). The precise and dependable 3D-QSAR model suggests a promising direction for further design of more active tschimganin-based insecticides. Metabolomics showed that compound <strong>56</strong> disrupted detoxification, amino acid biosynthesis, and energy metabolism and may affect the central nervous system of <em>A. gossypii</em>. The results of this study indicated that tschimganin analogs are a potential new class of green insecticides that can be used for the integrated management of <em>A. gossypii</em>.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 2","pages":"Pages 171-181"},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000327/pdfft?md5=3f863eb162810587c73f1644fd0fac89&pid=1-s2.0-S2773237124000327-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140757583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducing pesticide use: Synthesis and application of ROS-SPC as an efficient nanocarrier and scavenger of reactive oxygen species in plants 减少杀虫剂的使用:合成和应用 ROS-SPC 作为植物中活性氧的高效纳米载体和清除剂
Advanced Agrochem Pub Date : 2024-04-18 DOI: 10.1016/j.aac.2024.03.001
Tian-shi Jiang , Su-zhen Qi , Chang-heng Zhu , Han-qing Zhao , Liu-sheng Duan
{"title":"Reducing pesticide use: Synthesis and application of ROS-SPC as an efficient nanocarrier and scavenger of reactive oxygen species in plants","authors":"Tian-shi Jiang ,&nbsp;Su-zhen Qi ,&nbsp;Chang-heng Zhu ,&nbsp;Han-qing Zhao ,&nbsp;Liu-sheng Duan","doi":"10.1016/j.aac.2024.03.001","DOIUrl":"10.1016/j.aac.2024.03.001","url":null,"abstract":"<div><p>There is an increasing need to reduce the use of pesticides to reduce their potential threat to food/environmental safety. At the same time, an increase in reactive oxygen species (ROS) induced by abiotic stresses in plants can lead to an increase in ROS in the plant and affect yield. In this paper, ROS-SPC was synthesised by two reactions and used as an efficient pesticide nanocarrier/adjuvant and scavenger of reactive oxygen species (ROS) in plants. By hydrophobic interaction, ROS-SPC spontaneously conjugated to fluazinam with a pesticide loading capacity (PLC) of 15.1 %. After fluazinam was conjugated to ROS-SPC, the particle size of fluazinam was reduced from 64.70 nm reduced to 19.82 nm, and the contact angle of pesticide droplets on plant leaves was significantly reduced from 59.44° to 26.76°. ROS-SPC as a carrier was tested to inhibit phytopathogenic fungi by 200 % more than conventional delivery methods. In addition, we also learned that ROS-SPC with endocytosis capability can indeed remove reactive oxygen species from plants. Tests using HUVEC cells showed that ROS-SPC has low cytotoxicity within a reasonable range of applications, and ROS-SPC was tested to have low toxicity to pollinating bees.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 2","pages":"Pages 162-170"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000297/pdfft?md5=71581b4d44320b2bd4c7d6e33de037be&pid=1-s2.0-S2773237124000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140766677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on the synthesis of phenylurea derived plant growth regulators 合成苯基脲类植物生长调节剂的研究进展
Advanced Agrochem Pub Date : 2024-04-17 DOI: 10.1016/j.aac.2024.04.001
Dongmei Chen, Tianhui Liao, Wenjun Ye, Zhichao Jin, Shichao Ren
{"title":"Research progress on the synthesis of phenylurea derived plant growth regulators","authors":"Dongmei Chen,&nbsp;Tianhui Liao,&nbsp;Wenjun Ye,&nbsp;Zhichao Jin,&nbsp;Shichao Ren","doi":"10.1016/j.aac.2024.04.001","DOIUrl":"10.1016/j.aac.2024.04.001","url":null,"abstract":"<div><p>Plant growth regulators (PGRs) are chemical substances that imitate the functions of phytohormones to enhance the crop yield and the harvest process. Phenylurea-derived plant growth regulators are known for their excellent efficacy in promoting fruit growth, particularly in kiwifruit, grapes, and melons. Phenylurea derivatives represent one class of the highly efficient and versatile PGRs. Specifically, forchlorfenuron (CPPU, <em>N</em>-(2-chloro-4-pyridinyl)-<em>N′</em>-phenylurea) exhibits similar growth-regulating efficacy to cytokinins and has a significant impact on the plant growth and the crop yield. As a result, there is growing interest in exploring the incorporation of various phenylurea moieties into agrochemicals to enhance their regulatory properties on crops. This review aims to provide a comprehensive overview on representative synthetic approaches for phenylurea derived PGRs. Additionally, we provide our perspective on the future development in this active research field.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 2","pages":"Pages 143-150"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000315/pdfft?md5=e555c0162c31724d5f4b279c20f8d8fd&pid=1-s2.0-S2773237124000315-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140773581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutrient and growth elucidation of a novel coated urea on oilseed rape in three main cultivation areas 新型涂层尿素在三个主要种植区油菜上的养分和生长阐释
Advanced Agrochem Pub Date : 2024-03-22 DOI: 10.1016/j.aac.2024.03.002
{"title":"Nutrient and growth elucidation of a novel coated urea on oilseed rape in three main cultivation areas","authors":"","doi":"10.1016/j.aac.2024.03.002","DOIUrl":"10.1016/j.aac.2024.03.002","url":null,"abstract":"<div><p>A novel coated urea (MVCU) was prepared, and its application effect was verified by field trials of oilseed rape in three main cultivation areas. Meanwhile, the nutrient release and coating layer changes of MVCU in static water at 25 °C and different soils were systematically evaluated. MVCU showed a long nutrient release time under static water (77 days) and soil incubation (140 days) conditions due to the slow degradation of the coating layer in MVCU, and its nitrogen release coincided well with oilseed rape nitrogen demand. The above results were further confirmed by FT-IR spectra and SEM analysis. Compared with conventional urea (U), the field trials of MVCU in the three main cultivation areas showed high nitrogen utilization efficiency and yield advantages in oilseed rape. The field trials results indicated that the MVCU significantly enhanced the aboveground dry matter (28.7%), the seed nitrogen concentration (9.5%) and aboveground nitrogen accumulation (42.5%) of oilseed rape at the mature stage as compared to that of the U. The oilseed rape yield enhanced by 932.8 kg/hm<sup>2</sup>, the average growth rate was 65.1%, and nitrogen utilization efficiency increased by 21.2%. In short, MVCU has the advantages of excellent slow-release performance and strong applicability, and its yield-increasing effect on oilseed rape could reach or even be better than that of traditional fertilization.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 3","pages":"Pages 246-255"},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000303/pdfft?md5=c5592db21fd88635eafe58596b797976&pid=1-s2.0-S2773237124000303-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140269349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breaking ground: ABLs and TMKs as co-receptors to perceive extracellular auxin 突破性进展:ABL 和 TMK 作为共同受体感知细胞外的植物生长素
Advanced Agrochem Pub Date : 2024-03-01 DOI: 10.1016/j.aac.2024.02.002
Guan-Zhu Wang , Xue Wu , Ge-Fei Hao
{"title":"Breaking ground: ABLs and TMKs as co-receptors to perceive extracellular auxin","authors":"Guan-Zhu Wang ,&nbsp;Xue Wu ,&nbsp;Ge-Fei Hao","doi":"10.1016/j.aac.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.aac.2024.02.002","url":null,"abstract":"<div><p>Auxin is an important phytohormone that regulates a string of vital rapid responses, and its signaling perception mechanism has been one of the hot spots of research. It has been shown that the ABP1/TMKs module is involved in regulating extracellular auxin signaling, however, the role of ABP1 as an auxin receptor is highly controversial. Therefore, the mechanism of quintessential TMKs sense extracellular auxin remains unresolved. Recently, a study identified two new auxin-binding proteins, ABL1 and ABL2, which directly interact with TMKs to perceive apoplast auxin. This groundbreaking research unravels the mystery surrounding how plants perceive extracellular auxin signals.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 1","pages":"Pages 6-8"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000108/pdfft?md5=7d428eb132fa942d22d3c0f979838944&pid=1-s2.0-S2773237124000108-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum for previous published articles 对以前发表文章的勘误
Advanced Agrochem Pub Date : 2024-03-01 DOI: 10.1016/j.aac.2024.01.007
{"title":"Erratum for previous published articles","authors":"","doi":"10.1016/j.aac.2024.01.007","DOIUrl":"https://doi.org/10.1016/j.aac.2024.01.007","url":null,"abstract":"","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 1","pages":"Page 107"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237124000078/pdfft?md5=23d823239cedffa6f2885ac082645573&pid=1-s2.0-S2773237124000078-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel ABA structural analogues enhanced plant resistance by inducing the plant immunity and inactivating ABA signaling pathway 新型 ABA 结构类似物通过诱导植物免疫和使 ABA 信号通路失活来增强植物抗性
Advanced Agrochem Pub Date : 2024-03-01 DOI: 10.1016/j.aac.2023.08.006
Yanke Jiang , Yingzhe Yue , Zhaoxu Wang , Chongchong Lu , Zhizheng Wang , Ziyi Yin , Yang Li , Ge-Fei Hao , Xinhua Ding
{"title":"A novel ABA structural analogues enhanced plant resistance by inducing the plant immunity and inactivating ABA signaling pathway","authors":"Yanke Jiang ,&nbsp;Yingzhe Yue ,&nbsp;Zhaoxu Wang ,&nbsp;Chongchong Lu ,&nbsp;Zhizheng Wang ,&nbsp;Ziyi Yin ,&nbsp;Yang Li ,&nbsp;Ge-Fei Hao ,&nbsp;Xinhua Ding","doi":"10.1016/j.aac.2023.08.006","DOIUrl":"10.1016/j.aac.2023.08.006","url":null,"abstract":"<div><p>Abscisic acid (ABA) is a phytohormone that not only important for plant growth, but also mediating the stress response. The roles of ABA in plant immunity are especially multifaceted. Recently, the ABA functional analogues are of great significance to promote its application. Here, we reported an ABA functional analogue named 167A. 167A inhibits plant growth and seeds germinating of <em>Arabidopsis</em>. Meanwhile, the 167A enhanced the plant immunity, which is opposite of ABA. We further investigated the PTI-response after 167A treatment, and the results show that the ROS burst, callose deposition accumulate with 167A treatment. Moreover, 167A also influence the degree of stomal closed. RNA-seq assays show that the 167A down-regulated the ABA associated genes and up-regulated the JA/SA/ET associated genes. Through genetic analysis, the 167A modulating the plant resistance through the PYR/PYL Receptors. Together, these results demonstrate that a novel ABA analogue 167A positive regulated plant immunity and has great potential for agricultural applications.</p></div>","PeriodicalId":100027,"journal":{"name":"Advanced Agrochem","volume":"3 1","pages":"Pages 64-73"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773237123000618/pdfft?md5=950fc1ce4b063f0030ecd6850660d4e8&pid=1-s2.0-S2773237123000618-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85121108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信