Akram Bediaf, Sami Bedra, Djemai Arar, Mohamed Bedra
{"title":"Unraveling the resonant frequency of H-shaped microstrip antennas using a deep learning approach","authors":"Akram Bediaf, Sami Bedra, Djemai Arar, Mohamed Bedra","doi":"10.1007/s10825-024-02270-6","DOIUrl":"10.1007/s10825-024-02270-6","url":null,"abstract":"<div><p>This paper introduces a novel physics-informed learning approach that combines principles from physics with deep learning techniques to optimize the simulation process of microstrip antennas. These deep learning-based approaches are preferable because traditional full-wave models used in antenna design are computationally intensive and require significant memory due to their reliance on iterative algorithms, leading to exponential increases in resource demands as input parameters grow. In contrast, the proposed deep learning method requires significant computational resources only during training, with a constant time complexity of O(1) during deployment. This results in much faster modeling, allowing a broader range of antenna configurations to be processed more quickly, thereby improving the efficiency of the design workflow. Unlike conventional deep learning methods that rely solely on data, our approach leverages the underlying physical laws governing antenna behavior, particularly beneficial when labeled data is scarce or difficult to obtain. We propose a bias observational physics-informed learning technique by integrating physical laws into the loss function, which includes two components: Neuron Loss, the standard MSE measuring prediction accuracy against actual data, and Physics Loss, which penalizes deviations from physical laws as represented by a cavity model. The total loss combines these two, with higher physics loss indicating poorer alignment with physical principles and lower physics loss suggesting better adherence to them. This approach refines predictions by balancing data fidelity with physical constraint, wherein the dataset is sourced from simulations and real-world measurements. This strategy ensures model uncertainty and broad generalization capabilities. Computational efficiency is a key consideration, with our approach implemented on low-specification hardware, emphasizing optimal resource and power consumption. The H-shaped microstrip antennas (HMAs), known for its wide and dual-band properties, serves as the target antenna for our study. We employ three sequential models’ recurrent neural networks (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—integrated with a cavity model-driven resonance frequency representation to maintain the resonance mode TM<sup>10</sup> at prediction. Comparative analysis of these models encompasses execution time, prediction convergence, loss reduction, prediction score (<i>R</i><sup>2</sup>), as well as memory and CPU usage. This research contributes four main sections elucidating the methodology, experimental setup, and results analysis, underscoring the efficacy of our deep learning approach in antenna optimization.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xieyang Zhang, Jiayu Zuo, Qing Li, Bin Liu, Wangfang Du
{"title":"Experimental Study on the Enhancement of Boiling Heat Transfer Performance Under the Condition of the Downward Heating Surface by an Electric Field","authors":"Xieyang Zhang, Jiayu Zuo, Qing Li, Bin Liu, Wangfang Du","doi":"10.1007/s12217-024-10154-4","DOIUrl":"10.1007/s12217-024-10154-4","url":null,"abstract":"<div><p>This paper experimentally investigated the impact of the electric field strength (<i>E</i>), electrode installation heights (<i>H</i>), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at <i>E</i> = 0.35 × 10<sup>6</sup> V/m, 0.70 × 10<sup>6</sup> V/m, 1.05 × 10<sup>6</sup> V/m, and 1.40 × 10<sup>6</sup> V/m, respectively, compared to <i>E</i> = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at <i>H</i> = 5.0 mm and <i>E</i> = 1.40 × 10<sup>6</sup> V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liliya Biktasheva, Alexander Gordeev, Thais Hernández, Polina Galitskaya, Svetlana Selivanovskaya
{"title":"Environmental adaptability and biosurfactant production of bacterial isolates from the Boca de Jaruco oil field (Cuba)","authors":"Liliya Biktasheva, Alexander Gordeev, Thais Hernández, Polina Galitskaya, Svetlana Selivanovskaya","doi":"10.1007/s12517-024-12130-z","DOIUrl":"10.1007/s12517-024-12130-z","url":null,"abstract":"<div><p>Environmental protection requirements and the need to increase the proportion of oil recovered by secondary methods have led to the rise in popularity of microbial enhanced oil recovery (MEOR) techniques. Usually, MEOR requires the use of indigenous strains of microorganisms residing in wells, as they are adapted to local conditions. However, for some wells and fields, such as the Boca de Jaruco field in Cuba, information about the oilfield microorganisms and their properties is extremely limited. One of the properties crucial for the successful implementation of MEOR in fields is the ability of indigenous strains to produce biosurfactants. The aim of the present study is to evaluate the ability of six bacterial isolates obtained from the Boca de Jaruco field in Cuba to produce biosurfactants. The isolates capable of utilizing oil as their sole carbon source were identified as <i>Bacillus subtilis</i> (strains CC21, CC23, CC31, and CC32), <i>Bacillus licheniformis</i> (strain CC33), and <i>Aeromonas veronii</i> (strain CC22). It was determined that all isolates can tolerate temperatures between 30 and 60 °C, salinity ranging from 0.5 to 10.0% NaCl, and pH levels between 6 and 9. Regarding their ability to produce biosurfactants, assessed using the drop collapse method, oil-spreading method, emulsification activity test, and surface tension measurement, the isolates ranked as follows: <i>A. veronii</i> CC22 > <i>B. subtilis</i> CC21 = <i>B. subtilis</i> CC31 > <i>B. subtilis</i> CC23 = <i>B. subtilis</i> CC32 > <i>B. licheniformis</i> CC33. The biosurfactants produced were stable in the presence of 1.7 to 20.0% NaCl, irrespective of temperature (30 or 70 °C). However, substituting 20% of the NaCl with CaCl<sub>2</sub> resulted in destabilization of the biosurfactants produced by all investigated isolates, with destabilization levels averaging up to 32% at 70 °C.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.827,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Wind pattern at the incursion site of Pangong Tso near Merak Village","authors":"Belur Ravindra, Deepangkar Sarkar, Shantikumar Singh Ningombam, Stanzin Tundup, Namgyal Dorje, Angchuk Dorje, Prabhu Kesavan, Dipankar Banerjee","doi":"10.1007/s10686-024-09972-6","DOIUrl":"10.1007/s10686-024-09972-6","url":null,"abstract":"<div><p>This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thin Layer Quantization Method for a Spin Particle on a Curved Surface","authors":"S. Kimouche, N. Ferkous","doi":"10.1007/s10773-024-05856-9","DOIUrl":"10.1007/s10773-024-05856-9","url":null,"abstract":"<div><p>Using the fundamental framework of the thin-layer quantization method, we discuss the non-relativistic limit of the Schrödinger-Dirac equation for a particle constrained to move on a curved surface. We show that the inclusion of spin connections in the formalism give rise to scalar terms which provide a new scalar geometric potential. The coupling between the spin connections determined by the geometry of the curved surface and the spin of the particle can generate bound states even for the repulsive case of this obtained geometric potential. The developed procedure is applied to a surface of axial symmetry. We give three interesting examples of surface confinement, namely cylindrical, spherical and conical, and we explicitly deduce the energy levels for each case.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 12","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferrante Micaela, Casado Ulises M., Álvarez Vera A., González Jimena S.
{"title":"Mechanical, rheological, nanoindentation and degradability evaluation of soft composite Chitosan/Pectin/NaCl hydrogels with cellulose nanowhiskers","authors":"Ferrante Micaela, Casado Ulises M., Álvarez Vera A., González Jimena S.","doi":"10.1007/s10965-024-04234-7","DOIUrl":"10.1007/s10965-024-04234-7","url":null,"abstract":"<div><p>Chitosan and pectin form biocompatible polyelectrolyte complex hydrogels. This study investigates the impact of cellulose nanowhiskers (CNW) and NaCl on hydrogel’s properties, particularly in mechanical behavior. Swelling tests revealed deswelling under physiological conditions. Thermal analysis indicated enhanced crosslinking with CNW, correlating with mechanical, rheological, and nanoindentation findings. Hydrogels with 10% CNW exhibited higher elastic modulus in compression tests. Rheological studies showed comparable values to skin, promising for wound dressing applications. Nanoindentation highlighted CNWs' surface effect on adhesive modulus. Degradation tests over 21 days demonstrated higher degradation in NaCl-containing hydrogels. Overall, NaCl influenced polymer matrix interactions, while CNW incorporation enhanced hydrogel performance. This study distinguishes between surface and bulk properties of hydrogels, underscoring the potential of CNW in biomaterial applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: Probing Open Charm Hadron Production with the ALICE-3 Detector at the High-Luminosity Large Hadron Collider","authors":"M. V. Malaev, V. G. Riabov","doi":"10.1134/S1062873824110078","DOIUrl":"10.1134/S1062873824110078","url":null,"abstract":"","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 11","pages":"1867 - 1867"},"PeriodicalIF":0.48,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1062873824110078.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. V. Petrov, V. I. Zherebchevsky, N. A. Maltsev, S. Yu. Torilov, N. A. Prokofiev, E. O. Zemlin, D. A. Komarova
{"title":"Experimental Setup Based on Pixel Detectors for the Precision Determination of High-Energy Proton Beam Characteristics","authors":"V. V. Petrov, V. I. Zherebchevsky, N. A. Maltsev, S. Yu. Torilov, N. A. Prokofiev, E. O. Zemlin, D. A. Komarova","doi":"10.1134/S1062873824708274","DOIUrl":"10.1134/S1062873824708274","url":null,"abstract":"<p>Characteristics of proton beams with an energy of 1 GeV are studied using an experimental setup based on a telescope of pixel detectors. Such parameters as pixel cluster multiplicity, beam emittance, and the setup’s resolution in each geometry are investigated.</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 11","pages":"1794 - 1799"},"PeriodicalIF":0.48,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. I. Kashapov, E. A. Bezus, D. A. Bykov, L. L. Doskolovich
{"title":"Erratum to: Differentiation of Optical Signals Using an Integrated Metal–Dielectric–Metal Structure","authors":"A. I. Kashapov, E. A. Bezus, D. A. Bykov, L. L. Doskolovich","doi":"10.1134/S1062873824110017","DOIUrl":"10.1134/S1062873824110017","url":null,"abstract":"","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 11","pages":"1861 - 1861"},"PeriodicalIF":0.48,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1062873824110017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Domain Structure of Ferrite–Garnet Films with Complex Anisotropy under Quasi-Stationary Magnetization Reversal","authors":"A. V. Matyunin, G. M. Nikoladze, P. A. Polyakov","doi":"10.1134/S1062873824708110","DOIUrl":"10.1134/S1062873824708110","url":null,"abstract":"<p>Results are presented from an experimental and theoretical analysis of the quasi-stationary magnetization reversal of ferrite–garnet films with complex anisotropy. A magneto-optical setup based on the Faraday effect is used to determine conditions that allow reduction of the area of a domain structure. Destruction of the homogeneous magnetization of the magnetic film in four narrow regions relative to one another at right angles is also established. A theory in good agreement with the experimental results is proposed.</p>","PeriodicalId":504,"journal":{"name":"Bulletin of the Russian Academy of Sciences: Physics","volume":"88 11","pages":"1710 - 1714"},"PeriodicalIF":0.48,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}