Chemical Product and Process Modeling最新文献

筛选
英文 中文
Frontmatter 头版头条
Chemical Product and Process Modeling Pub Date : 2023-06-01 DOI: 10.1515/cppm-2023-frontmatter3
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2023-frontmatter3","DOIUrl":"https://doi.org/10.1515/cppm-2023-frontmatter3","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"336 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136108101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the energy, environmental, and economic challenges and opportunities associated with steam sterilisation autoclaves 调查与蒸汽灭菌高压灭菌器相关的能源、环境和经济挑战和机遇
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-05-17 DOI: 10.1515/cppm-2022-0053
Jordan O’Callaghan, John Fitzpatrick, Fergal Lalor, E. Byrne
{"title":"Investigating the energy, environmental, and economic challenges and opportunities associated with steam sterilisation autoclaves","authors":"Jordan O’Callaghan, John Fitzpatrick, Fergal Lalor, E. Byrne","doi":"10.1515/cppm-2022-0053","DOIUrl":"https://doi.org/10.1515/cppm-2022-0053","url":null,"abstract":"Abstract Despite steam sterilisation in autoclaves being a common industrial method of sterilisation, very little research has been conducted into quantifying the resources these processes demand and their associated environmental impacts. This paper aims to investigate industrial steam sterilisation in autoclaves with particular application to the biopharmaceutical industry. A mathematical model of a steam autoclave was developed to examine relationships between load size, load material properties and autoclave capacity with energy consumption, environmental impact and cost of sterilisation. The two main energy requirements are thermal energy to produce the clean steam for sterilising, and electrical energy for the vacuum pump. The study showed that thermal energy is dominant, particularly as load increases. The percentage of the maximum load at which the autoclave is operated has a major impact on the specific energy requirement or the energy required to sterilise per unit mass of load. For a given autoclave, the energy requirement increases with increased load but the specific energy requirement decreases. This in turn impacts on the emissions and the energy cost. It is thus shown that it is much more energy efficient to operate at higher loads, making the autoclave much more energy and cost effective, and with less environmental impact. There is potential for applying the analysis presented in this work for conducting optimisation studies for determining the sizes of autoclaves that could minimise the energy requirement, environmental impact and economic cost (3E) of investments for specified load versus time profiles.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49615097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty 不确定条件下氢气回收变压吸附装置的优化设计
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-05-04 DOI: 10.1515/cppm-2022-0081
O. Golubyatnikov, E. Akulinin, S. Dvoretsky
{"title":"Optimal design of pressure swing adsorption units for hydrogen recovery under uncertainty","authors":"O. Golubyatnikov, E. Akulinin, S. Dvoretsky","doi":"10.1515/cppm-2022-0081","DOIUrl":"https://doi.org/10.1515/cppm-2022-0081","url":null,"abstract":"Abstract The paper proposes an approach to the optimal design of pressure swing adsorption (PSA) units for hydrogen recovery under uncertainty, which provides a reasonable margin of the potential resource of the PSA hydrogen unit and compensates for the negative impact of a random change in uncertain parameters within specified limits. A heuristic iterative algorithm is proposed to solve the design problem with a profit criterion, which is guaranteed to provide the technological requirements for the PSA unit, regardless of the values that take uncertain parameters from the specified intervals of their possible change. An experimental verification of the approach with the root-mean-square error of 19.43 % has been carried out. Optimization problems of searching for a combination of mode and design parameters under uncertainty for a range of 4-bed 4-step VPSA units with a capacity of 100–2000 L/min STP have been solved taking into account the requirements for hydrogen purity of 99.99+ %, gas inlet velocity of 0.2 m/s, and bed pressure drop (no more than 1 atm). It has been established that taking into account uncertainties leads to an increase in energy costs by 8–10 %, a decrease in profit by 10–15 %, and a decrease in hydrogen recovery by 4–5 %, which is a payment for the uninterrupted operation of the PSA unit. The effect of uncertain parameters (percentage composition of the gas mixture; gas temperature; the diameter of adsorbent particles) on the key indicators of the PSA process (recovery, profit, hydrogen purity, unit capacity) has been established and trends in adsorption duration, adsorption and desorption pressure, P/F ratio, valve capacity, bed length, adsorber diameter for design of hydrogen PSA unit, which are necessary for subsequent design and scaling of units.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49106212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Simultaneous charging and discharging of metal foam composite phase change material in triplex-tube latent heat storage system under various configurations 不同配置下金属泡沫复合相变材料在三层管潜热储存系统中的同时充放电
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-05-04 DOI: 10.1515/cppm-2023-0003
Md Tabrez Alam, Anoop K. Gupta
{"title":"Simultaneous charging and discharging of metal foam composite phase change material in triplex-tube latent heat storage system under various configurations","authors":"Md Tabrez Alam, Anoop K. Gupta","doi":"10.1515/cppm-2023-0003","DOIUrl":"https://doi.org/10.1515/cppm-2023-0003","url":null,"abstract":"Abstract Phase change material (PCM) has high latent heat on one hand albeit low thermal conductivity on the other hand which restricts its utilization in thermal energy storage applications. Therefore, to improve thermal performance of PCM, various techniques have been employed. This numerical work intends to estimate the effect of copper metal foam (MF) in the seven various configurations (M1–M7) of triple-tube heat exchanger (TTHX) under simultaneous charging and discharging (SCD) conditions using heat transfer fluids (HTF) both the sides. Five distinct configurations with equal volumes of PCM and composite PCM (CPCM) have been considered for optimization standpoint. RT55 (melting temperature = 327 K) is taken as PCM. Based on thermo-physical properties of PCM and thermal boundary conditions on the heated tube, the dimensionless controlling parameters such as the Rayleigh number (Ra), Prandtl number (Pr), and Stefan number (Ste) were taken as 1.79 × 105, 30, and 0.21, respectively. Typical results on melt fraction, latent heat storage, temperature contours, and steady-state melt fraction and corresponding melting time have been reported. Performance yielded by all the configurations was compared for a fixed duration of 2 h. The positioning of MF largely affects the heat transfer mechanism in the latent heat storage unit. Results show that the bottom-side positioning of MF can boost the heat storage due to enhanced buoyancy-induced convection. Among all the models, M3 predicts the highest steady-state melt fraction (λ$lambda $ ss ≈ 0.62) in the shortest steady-state melting time (t ss ≈ 66 min), followed by model M6 (λ ss ≈ 0.58, t ss ≈ 65 min). The optimized design (model M3) shows ∼75 % latent heat storage enhancement than pure PCM (M1) case. Interestingly, one may also achieve ∼17.2 % higher enhancement using model M3 than M2 but with only half of the mass of MF than that used in full porous configuration (M2).","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47868695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of frictional pressure drop characteristics of single phase microchannels having different shapes of cross sections 不同截面形状单相微通道摩擦压降特性研究进展
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-05-03 DOI: 10.1515/cppm-2022-0084
Bushra Khatoon, W. Khan, Shabih-ul-Hasan, M. S. Alam
{"title":"A review of frictional pressure drop characteristics of single phase microchannels having different shapes of cross sections","authors":"Bushra Khatoon, W. Khan, Shabih-ul-Hasan, M. S. Alam","doi":"10.1515/cppm-2022-0084","DOIUrl":"https://doi.org/10.1515/cppm-2022-0084","url":null,"abstract":"Abstract This paper theoretically studied pressure drop variation in microchannels having different cross sections (circular, rectangular, square, trapezoidal, triangular, elliptical, parallel plate, co-centric circles, hexagonal, wavy, smoothed or rounded corners cross sections, and rhombus) for single phase Newtonian fluid (gas and liquid) flow. Based on 41 years (approximately) prior literature (1981–till now), 249 articles were studied and number of correlations of pressure drop calculation in microchannels with or without friction factor equation for four cross sections i.e., rectangular, square, circular, trapezoidal, wavy and triangular is collected and also mentioned their limitations at one place. Other than these four cross sections, there is very few experimental/numerical works was present in the literature. A comparable study was performed for laminar as well as turbulent friction factor to calculate the pressure drop with the help of classical theory for gas and liquid flow in microchannels with circular and rectangular cross sections. Results show wonderful outcomes i.e., correlations of laminar pressure drop study can be extendable for transition and turbulent regime in both types (circular and rectangular) of cross sections of microchannels. In different types of flow regime, it is suggested that for each type of cross section (circular and rectangular) we can go for single correlation for gas/liquid system. It is also investigated that the macro channels pressure drop equations can be used for microchannels up to the certain values of Reynolds number. Basically, this paper provides all possible equations of friction factor related to the microchannels that helps to calculate the pressure drop, is collected at one platform also compared their deviation with conventional channels.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44197209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of operating parameters on the sludge settling characteristics by treatment of the textile dyeing effluent using electrocoagulation 电絮凝法处理纺织印染废水污泥沉降特性的影响
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-04-26 DOI: 10.1515/cppm-2022-0060
A. Prajapati, D. Sharma, D. Pal, J. Patidar, Shamal Sen
{"title":"Effect of operating parameters on the sludge settling characteristics by treatment of the textile dyeing effluent using electrocoagulation","authors":"A. Prajapati, D. Sharma, D. Pal, J. Patidar, Shamal Sen","doi":"10.1515/cppm-2022-0060","DOIUrl":"https://doi.org/10.1515/cppm-2022-0060","url":null,"abstract":"Abstract This study invested the impact of the operational parameters (pH, Current Density (CD) and Electrode Gap (EG)) on the sludge generated after electrocoagulation treatment of textile dyeing effluent (TDE) by studying sludge settleability and filterability characteristics of EC generated sludge. Electrocoagulation treatment evaluated at laboratory scale with aluminum as electrode material at operating condition of parameters of pH, CD and EG. (pH-5.5, CD-105.12 A/m2 and EG-2.5 cm). Under these operating conditions, maximum COD reduction was achieved 88.45 % and maximum color reduction was about 66.92 %. Settling characteristics of TDE was studied by sludge volume index (SVI) and Centrifugal settleability index (CSI). From disposal point of view, filterability characteristic was also studied by simple gravity filtration method. Specific cake resistance, α (m/kg), filter medium resistance, Rm(m−1) was also studied. The specific cake resistance was found in the order of 38.4 × 1013 >34.13 × 1013 >22.25 × 1013 >11.19 × 1013 >7.30 × 1013 (m/kg) at the pH 9.5, 7.5, 1.5, 5.5 and 3.5 respectively. While filter medium resistance was found to be 111.22 × 109, 92.28 × 109, 82.33 × 109, 41.38 × 109 and 13.87 × 109 m−1 at pH 7.5, 9.5, 3.5, 5.5 and 1.5 respectively.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44104164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced design of PI controller with lead-lag filter for unstable and integrating plus time delay processes 带超前-滞后滤波器的不稳定积分时滞过程PI控制器的改进设计
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-04-21 DOI: 10.1515/cppm-2023-0008
Sanjay Kumar, M. Ajmeri
{"title":"Enhanced design of PI controller with lead-lag filter for unstable and integrating plus time delay processes","authors":"Sanjay Kumar, M. Ajmeri","doi":"10.1515/cppm-2023-0008","DOIUrl":"https://doi.org/10.1515/cppm-2023-0008","url":null,"abstract":"Abstract In this work, a proportional–integral (PI) controller with a set point filter is designed using the direct synthesis method for unstable plus time delay process. The Suggested method involves design parameters whose suitable values are recommended based on robust stability and robust performance constraints. The absence of derivative term makes PI controllers less sensitive to noise and, therefore, PI controllers are more preferable than PID in industrial applications. Despite a simple control architecture, the proposed method gives improved or comparable performance to previously presented approaches, which are comparatively complex. Four case studies are considered to evaluate the suitability and superiority of the suggested control technique. Proposed controller may be applied to the integrating plus time delay plants after some elementary transformations in the process model.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"0 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41654973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Model-based evaluation of heat of combustion using the degree of reduction 基于模型的燃烧热还原度评价
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-04-21 DOI: 10.1515/cppm-2023-0001
H. Shokrkar, S. Ebrahimi
{"title":"Model-based evaluation of heat of combustion using the degree of reduction","authors":"H. Shokrkar, S. Ebrahimi","doi":"10.1515/cppm-2023-0001","DOIUrl":"https://doi.org/10.1515/cppm-2023-0001","url":null,"abstract":"Abstract In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44967220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
Chemical Product and Process Modeling Pub Date : 2023-04-01 DOI: 10.1515/cppm-2023-frontmatter2
{"title":"Frontmatter","authors":"","doi":"10.1515/cppm-2023-frontmatter2","DOIUrl":"https://doi.org/10.1515/cppm-2023-frontmatter2","url":null,"abstract":"","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"408 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135464591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular dynamics simulations of water-ethanol droplet on silicon surface 硅表面水-乙醇液滴的分子动力学模拟
IF 0.9
Chemical Product and Process Modeling Pub Date : 2023-03-07 DOI: 10.1515/cppm-2022-0040
R. Biswas
{"title":"Molecular dynamics simulations of water-ethanol droplet on silicon surface","authors":"R. Biswas","doi":"10.1515/cppm-2022-0040","DOIUrl":"https://doi.org/10.1515/cppm-2022-0040","url":null,"abstract":"Abstract Molecular dynamics simulations are used to explore the wetting behavior of a water-ethanol droplet on the silicon surface. The effect of ethanol concentration on the wettability of a water-ethanol droplet on the silicon surface was analysed by calculation of contact angle. At 30% ethanol concentrations, the water contact angle was 50.7°, while at 50% ethanol concentrations, it was 36°. The results showed that the contact angle of a droplet on a silicon surface decreases with increasing ethanol concentrations. The formation of hydrogen bonds (HBs) between water-water molecules was 677 for the 30% ethanol system, while at 50% ethanol concentrations, it was 141. The number of hydrogen bonds between water molecules reduces as the ethanol concentrations rise. The HBs between water molecules and the silicon surface is seen to grow as the ethanol concentration rises. The overall potential energies of pure water, 7:3 water-ethanol, and 1:1 water-ethanol systems are −74.4, −96.16, and −158.59 kcal/mol, respectively. The contact angle and number density of water molecules on the surface of the silicon revealed that at different ethanol concentrations, more water molecules are distributed on the silicon surface.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44140039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信