{"title":"基于模型的燃烧热还原度评价","authors":"H. Shokrkar, S. Ebrahimi","doi":"10.1515/cppm-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based evaluation of heat of combustion using the degree of reduction\",\"authors\":\"H. Shokrkar, S. Ebrahimi\",\"doi\":\"10.1515/cppm-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Model-based evaluation of heat of combustion using the degree of reduction
Abstract In this study, the degree of reduction has been proposed to evaluate the heat of combustion in eight structural groups. The degree of reduction is commonly used in microbiology as a valuable tool to calculate the stoichiometry of process reactions. The degree of reduction model provides a simple, direct, and single-step technique for calculating the heat of combustion. The results from the degree of reduction model revealed that predicted values are in good agreement with results obtained using bond energies, with an average error of less than 2 %. Also, the computational method applied in this study can calculate the heat of combustion for other organic compounds and even unknown chemical compounds by measuring chemical oxygen demand (COD).
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.