Angelica Angeles Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, B. J. A. Magoling
{"title":"Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth","authors":"Angelica Angeles Macalalad, Quennie Rose Ebete, Dominic Gutierrez, Madelaine Ramos, B. J. A. Magoling","doi":"10.23939/CHCHT15.01.001","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.001","url":null,"abstract":"The present study is focused on the use of activated carbon derived from water hyacinth (WH-AC) as adsorbent for the removal of Cr(VI) from aqueous solution. The optimized WH-AC was found to be mesoporous and considered as granular. The surface area of 11.564 m2/g was found to have a good adsorption capacity. The adsorption data of the optimized WH-AC followed a pseudo-second order kinetics and the Freundlich isotherm model. Based on the correlation coefficient obtained from pseudo-second-order kinetic model, the R2 values were all above 0.99, which is closer to unity of one (1) indicating that it followed a chemisorption process. The adsorption capacity of WH-AC increased from 1.98 to 4.68 mg/g when adsorbate concentration increased from 20 to 50 mg/l. The overall study proved that the adsorption by activated carbon derived from water hyacinth can be an alternative and efficient technique in hexavalent chromium removal.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"62 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83962995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass","authors":"D. Kindzera, R. Hosovskyi, V. Atamanyuk, D. Symak","doi":"10.23939/CHCHT15.01.118","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.118","url":null,"abstract":"Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"68 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85096022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution","authors":"D. Symak, V. Sabadash, J. Gumnitsky, Z. Hnativ","doi":"10.23939/CHCHT15.01.148","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.148","url":null,"abstract":"The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"46 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76287627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation between Diameter of Microorganisms and Efficiency of Microorganisms Destruction under Gas/Cavitation Conditions","authors":"I. Koval","doi":"10.23939/CHCHT15.01.098","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.098","url":null,"abstract":"The values of еffective rate constants of microorganisms destruction (kd) were compared, depending on the diameter of cells and gas nature bubbling under cavitation conditions. The efficiency of cell destruction under Ar/US is larger by 2–2.5 times compared to He/US, O2/US and CO2/US. Yeast cells were destroyed faster than bacteria (kd (yeast cells) >> kd (bacteria cells)) that is explained by the cells size. The cell stability under cavitational conditions is reversely proportional to the cell diameter. Considering the cell sizes, the presented dependencies of kd = ƒ(dcells) can be successfully used as a standard not only for qualitative determination, but also for evaluating the efficiency of cavitation treatment of water in the presence of O2, CO2, Ar and He.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"46 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86699834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Konovalov, L. Patrylak, S. Zubenko, M. Okhrimenko, A. Yakovenko, A. Levterov, A. Avramenko, Pozharsky St. Kharkiv Ukraine
{"title":"Bench Motor Testing of Blended Fuels on their Basis","authors":"S. Konovalov, L. Patrylak, S. Zubenko, M. Okhrimenko, A. Yakovenko, A. Levterov, A. Avramenko, Pozharsky St. Kharkiv Ukraine","doi":"10.23939/CHCHT15.01.105","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.105","url":null,"abstract":"Alkaline transesterification of sunflower oil by n-butanol and ethanol on alkoxide-containing dried solutions of potassium hydroxide has been carried out. Complex character of spontaneous dividing of butanolysis products, accompanying with formation of three different species of glycerol layers, was observed. One of the later was found to be high-alkaline pure glycerol. Bench motor testing of biodiesel/diesel blends demonstrated slightly better power performance of butyl esters comparing with ethyl esters and regular decrease of harmful emissions (CO2, CO, NOx, CH) while increasing biodiesel fraction in mixture.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"47 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74940521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Tokar, S. Yefremov St. Dnipro Ukraine Economics, O. Chigvintseva
{"title":"The Quantum-Chemical and Spectral Criteria for Hydrogen Bonding Efficiency in Structural Analysis of Aramides","authors":"A. Tokar, S. Yefremov St. Dnipro Ukraine Economics, O. Chigvintseva","doi":"10.23939/CHCHT15.01.009","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.009","url":null,"abstract":"Some features of hydrogen bonding effects for the phenylon polymer matrix filled with a terlon fiber have been investigated at ab initio approximation. The results of calculations for isolated and dimerized structural forms of N-phenylbenzamide as a model compound are in good agreement with the spectral data for this composite material building.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"21 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88919157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pyshyev, D. Miroshnichenko, I. Malík, Aquilino Bautista Contreras, N. Hassan, A. A. Elrasoul
{"title":"State of the Art in the Production of Charcoal: a Review","authors":"S. Pyshyev, D. Miroshnichenko, I. Malík, Aquilino Bautista Contreras, N. Hassan, A. A. Elrasoul","doi":"10.23939/CHCHT15.01.061","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.061","url":null,"abstract":"The use of charcoal (CC) for various industries was analysed; the modern ideas about the factors influencing the process of obtaining CC were considered. The effect of raw materials nature (wood or agricultural wastes) and their characteristics (size, physical properties, chemical composition), as well as carbonization temperature, heating rate, oxygen level and pressure on the yield and quality of CC was described. The existing technologies for charcoal production were analyzed; they were classified according to the type of heating initiation and temperature maintenance during the carbonization process. The Lambiotte, DPC and Carbonex technologies were considered.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"130 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79602788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Saldan, L. Orovcik, O. Dobrovetska, O. Bilan, O. Kuntyi
{"title":"Chemical Leaching of Al3Ni and Al3Ti Alloys at Room Temperature","authors":"I. Saldan, L. Orovcik, O. Dobrovetska, O. Bilan, O. Kuntyi","doi":"10.23939/CHCHT15.01.081","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.081","url":null,"abstract":"Al3Ni and Al3Ti alloys were prepared by arc melting and exposed to chemical leaching in 5M NaOH at room temperature. In case of Al3Ni alloy, Al reached phases react with the leaching solution to produce nanoporous nickel with a pore diameter in the range of ~10–20 nm. Only pure Al phase of Al3Ti alloy chemically reacts with the production of a dense wrinkled surface with a wrinkle size of ~50–100 nm.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"121 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75960838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of Pb Ions from Oily Wastewater by Anthraquinone Modified Carbon Nanotube","authors":"V. M. Nansa, M. Otadi, A. Heydarinasab, R. Amiri","doi":"10.23939/CHCHT15.01.089","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.089","url":null,"abstract":"The aim of this research was to investigate the adsorption properties of anthraquinone modified carbon nanotube (ACNT) in oily wastewaters containing Pb ions. The modified adsorbents were characterized using Fourier transform infra-red spectroscopy and SEM analysis. The adsorption and regeneration studies were conducted in batch mode using a Taguchi (L16) orthogonal array to optimize experimental runs. The controllable factors used in this study consisted of: pH of the solution (A); adsorbent dosage (B); adsorbent type (C); contact time (D); temperature (F). The effects of each factor were studied at four levels on the removal efficiency of metals from aqueous solution. Concentrations of metal ions were assessed by atomic absorption spectrometer. The total optimum adsorptive removal of lead ions was obtained with C0 = 10 mg•l-1, T = 338 K, pH = 6, m = 0.020 mg and t = 60 min. The Langmuir model was representative to simulate adsorption isotherms. The adsorption kinetics of Pb adsorption by ACNT was modeled using the pseudo-first order, the pseudo-second order, and intraparticle diffusion kinetics equations. The results indicate that the pseudo-second order kinetic equation and intraparticle diffusion model were adequate to describe the adsorption kinetics.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"135 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79537137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Blayda, T. Vasylieva, N. Vasylieva, V. F. Khytrych, S. Shuliakova
{"title":"Study of Coal Microbiocenosis for Development of Biotechnological Method for its Desulfurization","authors":"I. Blayda, T. Vasylieva, N. Vasylieva, V. F. Khytrych, S. Shuliakova","doi":"10.23939/CHCHT15.01.074","DOIUrl":"https://doi.org/10.23939/CHCHT15.01.074","url":null,"abstract":"A presence of microscopic fungi, heterotrophic bacteria, as well as neutrophilic and acidophilic chemolitotrophic bacteria was determined in coal microbiocenosis. The largest and most active towards pyrite sulfur removal is the Acidithiobacillus genus. Heterotrophic bacteria have the biggest potential when it comes to removal of organic sulfur. Preceding treatment of coal with “silicate” bacteria from the Bacillus genus will allow to use coal microbiocenosis for its biodesulfurisation at its full potential.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"13 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81722322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}