{"title":"氯化钾溶解动力学规律及数学模型","authors":"D. Symak, V. Sabadash, J. Gumnitsky, Z. Hnativ","doi":"10.23939/CHCHT15.01.148","DOIUrl":null,"url":null,"abstract":"The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"46 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution\",\"authors\":\"D. Symak, V. Sabadash, J. Gumnitsky, Z. Hnativ\",\"doi\":\"10.23939/CHCHT15.01.148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.\",\"PeriodicalId\":9793,\"journal\":{\"name\":\"Chemistry & Chemical Technology\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/CHCHT15.01.148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/CHCHT15.01.148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution
The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined.