{"title":"向日葵生物质磨粒过滤干燥过程中的传热过程","authors":"D. Kindzera, R. Hosovskyi, V. Atamanyuk, D. Symak","doi":"10.23939/CHCHT15.01.118","DOIUrl":null,"url":null,"abstract":"Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.","PeriodicalId":9793,"journal":{"name":"Chemistry & Chemical Technology","volume":"68 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass\",\"authors\":\"D. Kindzera, R. Hosovskyi, V. Atamanyuk, D. Symak\",\"doi\":\"10.23939/CHCHT15.01.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.\",\"PeriodicalId\":9793,\"journal\":{\"name\":\"Chemistry & Chemical Technology\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry & Chemical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23939/CHCHT15.01.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/CHCHT15.01.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat Transfer Process During Filtration Drying of Grinded Sunflower Biomass
Filtration drying of grinded sunflower stems as the unit operation of the technological line for solid biofuel production has been proposed. Theoretical aspects of heat transfer processes during filtration drying have been analyzed. The effect of the drying agent velocity increase from 0.68 to 2.05 m/s on the heat transfer intensity has been established. The values of heat transfer coefficients have been calculated on the basis of the thin-layer experimental data and equation . Calculated coefficients for grinded sunflower stems have been correlated by the dimensionless expression within Reynolds number range of and the equation has been proposed to calculate the heat transfer coefficients, that is important for forecasting the heat energy costs at the filtration drying equipment design stage.