{"title":"Link prediction in multiplex social networks: An information transmission approach","authors":"Lei Si , Longjie Li , Hongsheng Luo , Zhixin Ma","doi":"10.1016/j.chaos.2024.115683","DOIUrl":"10.1016/j.chaos.2024.115683","url":null,"abstract":"<div><div>In recent years, link prediction in multiplex networks has attracted increasing interest of researchers. Multiplex social networks that model different types of social relationships between the same set of entities in separate layers are a special case of multiplex networks. However, most existing methods usually ignore that new links can also be formed through information transmission. Therefore, we propose a novel link prediction method that applies information transmission approach to multiplex social networks in this paper. To begin with, we define a new index and three new ways of information transmission in a multiplex network. In this regard, the similarities of potential links in the target layer are computed based on the total amount of information they transmit each other via fusing information from all layers. At last, the interlayer relevance method is used to weight all layers. To evaluate the prediction performance of the proposed method, extensive experiments are implemented on eight real-world multiplex networks, and the experimental results demonstrate that the proposed method significantly outperforms several competing state-of-the-art methods in most cases.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115683"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of a hybrid control algorithm for chaotifying mechanical systems","authors":"Swapnil Mahadev Dhobale, Shyamal Chatterjee","doi":"10.1016/j.chaos.2024.115670","DOIUrl":"10.1016/j.chaos.2024.115670","url":null,"abstract":"<div><div>This paper presents a novel hybrid control algorithm for inducing chaos in a limit cycle oscillator by chaotically varying suitable parameters within the chosen bounds. A discrete chaotic map governs the parameter variation at the predetermined Poincaré section. A cubic polynomial mapping is used to obtain the continuous variation between two consecutive crossings at the Poincaré section. A resonant controller with acceleration feedback is designed to implement the proposed control algorithm in a mechanical system with a single degree of freedom. This controller generates a limit cycle at the desired frequency and amplitude. The next step involves using a modified Pomeau-Manneville (PM) map to achieve the chaotification of the limit cycle, which yields a flat Fast Fourier Transform (FFT) of the response within a given bandwidth. The proposed control strategy not only chaotifies the system but also regulates desired response characteristics, such as amplitude, frequency band, chaoticity and power spectral distributions. This is believed to be the first attempt to control the desired characteristics of chaotic response in the case of continuous-time systems. Experiments with an electromagnetic actuator validate the simulation results.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115670"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Penetrative convection in Navier–Stokes-Voigt fluid induced by internal heat source","authors":"Puneet Rana , Mahanthesh Basavarajappa","doi":"10.1016/j.chaos.2024.115689","DOIUrl":"10.1016/j.chaos.2024.115689","url":null,"abstract":"<div><div>This study investigates the phenomenon of penetrative convection in a viscoelastic fluid described by the Navier-Stokes-Kelvin-Voigt (NSKV) model, incorporating internal heat sources and realistic rigid boundary conditions. We examine four distinct space-dependent heat source distributions: constant, linearly increasing, decreasing, and non-uniform across the fluid layer. The Kelvin-Voigt fluid layer is simultaneously heated and salted from the bottom. We employ both linear instability analysis using normal mode technique and nonlinear stability analysis through energy method. The resulting differential eigenvalue systems are treated using the Chebyshev-Spectral-QZ method. Our investigation focuses on the effects of the internal heating parameter, Kelvin-Voigt number, and solute Rayleigh number on the threshold values for convection onset. Our results reveal that internal heat sources destabilize the fluid system, while the salt Rayleigh number contributes to system stabilization. Nonlinear analysis reveals that the total energy of perturbations to the steady-state conduction solutions decays exponentially, and the decay rate is stronger for the Kelvin-Voigt fluid than for Newtonian fluid. Furthermore, the Kelvin-Voigt number acts as a stabilizing factor for the onset of convection, exerting a stabilizing effect on the system. Importantly, the thresholds obtained from linear and nonlinear theories differ in both the presence and absence of internal heat sources, suggesting the existence of a subcritical instability region (SIR). This comprehensive analysis provides new insights into the complex dynamics of penetrative convection in viscoelastic fluids with internal heating.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115689"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A neural diffusion model for identifying influential nodes in complex networks","authors":"Waseem Ahmad, Bang Wang","doi":"10.1016/j.chaos.2024.115682","DOIUrl":"10.1016/j.chaos.2024.115682","url":null,"abstract":"<div><div>Identifying influential nodes in complex networks through influence diffusion models is a challenging problem that has garnered significant attention in recent years. While many heuristic algorithms have been developed to address this issue, neural models that account for weighted influence remain underexplored. In this paper, we introduce a neural diffusion model (NDM) designed to identify weighted influential nodes in complex networks. Our NDM is trained on small-scale networks and learns to map network structures to the corresponding weighted influence of nodes, leveraging the weighted independent cascade model to provide insights into network dynamics. Specifically, we extract weight-based features from nodes at various scales to capture their local structures. We then employ a neural encoder to incorporate neighborhood information and learn node embeddings by integrating features across different scales into sequential neural units. Finally, a decoding mechanism transforms these node embeddings into estimates of weighted influence. Experimental results on both real-world and synthetic networks demonstrate that our NDM outperforms state-of-the-art techniques, achieving superior prediction performance.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115682"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengyan Liu , Wangyong Lv , Xinzexu Cheng , Yihao Wen , Xiaofeng Yang
{"title":"Evolution of strategies in evolution games on small-world networks and applications","authors":"Chengyan Liu , Wangyong Lv , Xinzexu Cheng , Yihao Wen , Xiaofeng Yang","doi":"10.1016/j.chaos.2024.115676","DOIUrl":"10.1016/j.chaos.2024.115676","url":null,"abstract":"<div><div>In the game-theoretic model of small-world networks, it is traditionally believed that participants randomly select neighbors to learn from. However, in the era of highly interconnected information, we can regard participants as highly rational individuals who can comprehensively consider the strategies of all their neighbors and adjust their own strategies accordingly to seek the best benefits. From this perspective, we utilize the small-world network model to depict the competitive relationship between participants and propose new strategy updating rules by introducing the Markov transition matrix, aiming to explore the specific impact of the small-world network structure on the cooperation rate of participants. Through simulation analysis, we observe that the behavior of the group tends to evolve towards strategies with higher returns. Among them, the number of neighbors in the network, the initial proportion of cooperative participants, and the potential irrational factor in the updating rules significantly affect the evolution speed of the cooperation rate. It is worth noting that the probability of random reconnection and the number of network nodes have no significant impact on the evolution trend of the cooperation rate. Furthermore, we apply this model to practical scenarios of bidding projects. Combined with a specific analysis of the bidding background, we find that reducing the number of adjacent edges and the initial proportion of cooperative participants are crucial factors in effectively reducing the cooperation rate. This discovery not only provides us with a new perspective to understand cooperative behavior in complex networks, but also offers valuable references for strategy making in actual bidding projects.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115676"},"PeriodicalIF":5.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Social contagion under hybrid interactions","authors":"Xincheng Shu, Man Yang, Zhongyuan Ruan, Qi Xuan","doi":"10.1016/j.chaos.2024.115687","DOIUrl":"10.1016/j.chaos.2024.115687","url":null,"abstract":"<div><div>Threshold-driven models and game theory are two fundamental paradigms for describing human interactions in social systems. However, in mimicking social contagion processes, models that simultaneously incorporate these two mechanisms have been largely overlooked. Here, we study a general model that integrates hybrid interaction forms by assuming that a part of nodes in a network are driven by the threshold mechanism, while the remaining nodes exhibit imitation behavior governed by their rationality (under the game-theoretic framework). Our results reveal that the spreading dynamics are determined by the payoff of adoption. For positive payoffs, increasing the density of highly rational nodes can promote the adoption process, accompanied by a double phase transition. The degree of rationality can regulate the spreading speed, with less rational imitators slowing down the spread. We further find that the results are opposite for negative payoffs of adoption. This model may provide valuable insights into understanding the complex dynamics of social contagion phenomena in real-world social networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115687"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex dynamics in tick-borne disease transmission: A Filippov-type control strategy model with multiple time delays","authors":"Ning Yu , Xue Zhang","doi":"10.1016/j.chaos.2024.115673","DOIUrl":"10.1016/j.chaos.2024.115673","url":null,"abstract":"<div><div>This paper presents a tick-borne disease transmission model with a Filippov-type control strategy that involves spraying insecticides to kill ticks once the number of infected hosts exceeds a certain threshold. The model also incorporates two delays in disease transmission: an internal delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo></mrow></math></span> representing the maturation period of pathogens inside ticks, and an external delay <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo></mrow></math></span> accounting for the time from a host being bitten by an infected tick to becoming infectious. Theoretical analysis deduces that the endemic equilibrium of the delayed Filippov system may undergo a Hopf bifurcation as the delays exceed critical levels. Furthermore, based on Filippov’s convex analysis, the sliding mode dynamics of the system are explored. The results indicate that depending on the threshold levels, the system’s solutions eventually converge to either the regular equilibrium of the two subsystems, a pseudo-equilibrium on the sliding mode, or a stable periodic solution. From a numerical perspective, the system undergoes different boundary focus bifurcation under different time delays and thresholds. Moreover, variations in the delay can lead to the emergence of a global sliding bifurcation on the sliding mode. Therefore, a Filippov system with multiple delays provides new insights and directions for controlling the spread of tick-borne diseases.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115673"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cooperation dynamics of reputation-based manhattan distance social circle in spatial prisoner’s dilemma game in evolutionary game theory","authors":"Jinlong Ma , Hongfei Zhao","doi":"10.1016/j.chaos.2024.115688","DOIUrl":"10.1016/j.chaos.2024.115688","url":null,"abstract":"<div><div>Inspired by the complex interplay between reputation and social proximity, we propose a novel model called the Manhattan distance reputation circle, integrating nonlinear reputation mechanisms and interaction range within the spatial prisoner’s dilemma game. In this model, the average reputation of neighbors sharing the same strategy within a specific Manhattan distance is incorporated into the central node’s strategy update rule. Two rules are introduced to evaluate average reputation: rule A employs the standard averaging method, while rule B applies a distance-based decay, introducing a nonlinear weighting to the reputation, giving more influence to closer neighbors. Monte Carlo simulations reveal that the proposed model exhibits nonlinear dynamics that promote the emergence of cooperative strategies. Specifically, greater interaction range and reputation adjustment values enhance cooperation, although the impact of interaction range plateaus beyond a certain threshold. While both rules foster cooperation, rule B’s nonlinear reputation decay reduces the fluctuations in cooperation seen in rule A as <span><math><mi>α</mi></math></span> increases under high introduction rates in the model.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115688"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel global perspective: Characterizing the fractal basins of attraction and the level of chaos in a double pendulum","authors":"Bo Qin , Ying Zhang","doi":"10.1016/j.chaos.2024.115694","DOIUrl":"10.1016/j.chaos.2024.115694","url":null,"abstract":"<div><div>The objective of this work is to deeply investigate the sensitivity to initial conditions and the factors influencing the level of chaos in a double pendulum system from a novel global perspective. Firstly, the pendulum's motion trajectories and mechanical energy are compared to determine the appropriate numerical algorithms for solving this model, including the fourth-order Runge-Kutta method (RK4 method) and the Euler method. Secondly, the captured experimental motion trajectories, along with numerical results, vividly demonstrate the system's sensitivity to initial conditions. On this basis, we develop an algorithm that successfully delineates the basins of attraction associated with the number of flips and the final angular positions of the pendulum, uncovering a petal-like structure characterized by significant rotational symmetry and fractal features. Finally, we employ a heat map of the average maximum Lyapunov exponent to reveal the correlation between mass ratio and the level of chaos. Both qualitative and quantitative results consistently confirm the mechanisms underlying the system's sensitivity to initial conditions and the reliability of the developed algorithm. This research provides valuable insights into the global dynamics and engineering applications of the double pendulum system.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115694"},"PeriodicalIF":5.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Wang , Yin-Ling Liu , Xiao-Fen Lin , Rui-Wu Wang
{"title":"Eco-evolutionary feedbacks promotes species coexistence in the fig-wasp mutualism with Allee effect","authors":"Lin Wang , Yin-Ling Liu , Xiao-Fen Lin , Rui-Wu Wang","doi":"10.1016/j.chaos.2024.115680","DOIUrl":"10.1016/j.chaos.2024.115680","url":null,"abstract":"<div><div>Mutualistic relationships between species have always fascinated ecologists because of the key role they play in ecosystem functioning. Early studies on the mutualism focused on the mutual influences and constraints between mutualistic parties and the environment. In fact, ecological and evolutionary processes may occur at the same time scale, which means that the coupling of these two processes needs to be fully considered. However, it is still a lack of coupled population dynamics and phenotypic trait dynamics of species to explore maintenance mechanisms of the mutualism. Here, we developed an eco-evolutionary model to investigate intrinsic driving forces for the maintenance of fig-wasp mutualism by coupling population dynamics, phenotypic trait (i.e., style and ovipositor) evolution, and Allee effect of the fig tree. Theoretical results found that: (<em>i</em>) the presence of the Allee effect contributes to the stabilisation of mutualistic relationships in the fig-wasp system; (<em>ii</em>) the fig-wasp mutualism is more prone to oscillation when the evolutionary rate of the style is greater than that of the ovipositor, and population dynamics of mutualistic parties are mainly dominated by interspecific interactions; (<em>iii</em>) under a relatively harsh environment, the eco-evolutionary model predicts the coexistence of species, whereas the ecological model does not. Our work suggests that eco-evolutionary feedbacks have an important effect on the stability of ecosystems, with a view to providing theoretical support for the understanding of interspecific interactions in general mutualistic systems and for the conservation of biodiversity.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"189 ","pages":"Article 115680"},"PeriodicalIF":5.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}