Particle separation using surface acoustic waves based on microfluidic chip

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Wenbo Han, Hongyuan Zou, Haoyu Yue, Yuhang Zhong, Wei Li, Cunyou Zhang, Hongpeng Zhang
{"title":"Particle separation using surface acoustic waves based on microfluidic chip","authors":"Wenbo Han,&nbsp;Hongyuan Zou,&nbsp;Haoyu Yue,&nbsp;Yuhang Zhong,&nbsp;Wei Li,&nbsp;Cunyou Zhang,&nbsp;Hongpeng Zhang","doi":"10.1016/j.chaos.2025.116557","DOIUrl":null,"url":null,"abstract":"<div><div>Surface acoustic wave (SAW)-based microfluidic particle separation offers exceptional biocompatibility and precision for biological applications. This study establishes a multiphysics coupling model integrating piezoelectric dynamics, acoustic-structural interactions, and fluid-particle mechanics to optimize SAW separator design. Systematic analysis of interdigital transducer geometry and flow-acoustic coupling reveals that electrode width governs acoustic wavelength distribution, with 50 μm electrodes achieving optimal pressure gradients. Increasing electrode pairs (N = 5) enhances acoustic pressure inversion, while applied voltage (20 V) proportionally amplifies radiation forces. Notably, channel height exhibits negligible impact on the acoustic field. The optimized device achieves efficient separation of 5–15 μm particles through synergistic flow focusing and acoustic node alignment. This work provides a systematic framework for high-purity biological particle separation, advancing SAW-based microfluidics in diagnostics and cellular analysis.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"198 ","pages":"Article 116557"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925005703","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Surface acoustic wave (SAW)-based microfluidic particle separation offers exceptional biocompatibility and precision for biological applications. This study establishes a multiphysics coupling model integrating piezoelectric dynamics, acoustic-structural interactions, and fluid-particle mechanics to optimize SAW separator design. Systematic analysis of interdigital transducer geometry and flow-acoustic coupling reveals that electrode width governs acoustic wavelength distribution, with 50 μm electrodes achieving optimal pressure gradients. Increasing electrode pairs (N = 5) enhances acoustic pressure inversion, while applied voltage (20 V) proportionally amplifies radiation forces. Notably, channel height exhibits negligible impact on the acoustic field. The optimized device achieves efficient separation of 5–15 μm particles through synergistic flow focusing and acoustic node alignment. This work provides a systematic framework for high-purity biological particle separation, advancing SAW-based microfluidics in diagnostics and cellular analysis.
基于微流控芯片的表面声波颗粒分离
基于表面声波(SAW)的微流控颗粒分离为生物应用提供了卓越的生物相容性和精度。本研究建立了一个集成压电动力学、声结构相互作用和流体-颗粒力学的多物理场耦合模型,以优化SAW分离器的设计。对数字间换能器几何形状和流声耦合的系统分析表明,电极宽度决定声波波长分布,50 μm电极获得最佳压力梯度。增加电极对(N = 5)增强声压反转,而施加电压(20 V)成比例放大辐射力。值得注意的是,通道高度对声场的影响可以忽略不计。优化后的装置通过协同流动聚焦和声学节点对准实现了5-15 μm颗粒的高效分离。这项工作为高纯度生物颗粒分离提供了一个系统的框架,推进了基于saw的微流体在诊断和细胞分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信