Dongxu Lin, Pengyu Wei, Mengyang Zhang, Kang Li, Lina Li, Zhipeng Li, Changcheng Luo, Wenbo Kuang, Kai Cui, Zhong Chen
{"title":"Targeting ROCK1/YAP1 Axis Ameliorates Inflammation-Induced Prostatic Hyperplasia via Stabilising SIRT1-Dependent Mitochondrial Dynamics.","authors":"Dongxu Lin, Pengyu Wei, Mengyang Zhang, Kang Li, Lina Li, Zhipeng Li, Changcheng Luo, Wenbo Kuang, Kai Cui, Zhong Chen","doi":"10.1111/cpr.70085","DOIUrl":"https://doi.org/10.1111/cpr.70085","url":null,"abstract":"<p><p>Benign prostatic hyperplasia (BPH) is a common condition in older men, with its prevalence increasing as age advances. Chronic inflammation orchestrates oxidative stress to exacerbate BPH. YAP1, which regulates organ size, cellular homeostasis, and tissue fibrosis, can be activated by ROCK1. Given the urgent clinical need for more effective therapies, this study explored whether targeting the ROCK1/YAP1 axis could mitigate BPH progression. Here, rats received in situ adeno-associated virus (AAV) injection to induce prostate-specific YAP1 overexpression. An inflammation-associated experimental autoimmune prostatitis (EAP) model was established by prostate antigen immunisation, followed by treatment with ROCK1 inhibitor fasudil and YAP1 inhibitor verteporfin. Cell models were treated with specific inhibitors to confirm the critical role of YAP1 in modulating mitochondrial function. As a result, YAP1 overexpression was sufficient to induce a pathological BPH phenotype. Specifically, YAP1 activated the inflammatory cascade to provoke an immune response, disrupted proliferation/apoptosis balance to induce tissue hyperplasia, triggered epithelial-mesenchymal transition (EMT) and reactive stroma to drive fibrosis, and promoted NOX4/ROS generation and antioxidant depletion to cause oxidative stress. The inflammation-induced experimental autoimmune prostatitis (EAP) model also presented analogous BPH lesions, which were significantly alleviated when treated with ROCK1 inhibitor fasudil and YAP1 inhibitor verteporfin. Mechanistically, YAP1 activation under inflammatory conditions suppressed SIRT1 expression, thereby exacerbating oxidative stress through the disruption of DRP1/MFN2-mediated mitochondrial dynamics. Overall, inflammation-driven activation of the ROCK1/YAP1 axis aggravates oxidative stress, promoting BPH hyperplasia and fibrosis by impairing SIRT1-regulated mitochondrial dynamics. These findings provide a preclinical rationale for developing ROCK1 or YAP1 inhibitors as targeted therapies for BPH patients with chronic inflammation.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70085"},"PeriodicalIF":5.9,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144567184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengjun Huang, Hanqi Lei, Tongyu Tong, Hailin Zou, Binyuan Yan, Fei Cao, Yiting Wang, Qiliang Teng, Bin Xu, Juan Luo, Yupeng Guan, Shaohong Lai, Peng Li, Jun Pang
{"title":"CDK12 Inactivation Attenuates Prostate Cancer Progression by Inhibiting BNIP3-Mediated Mitophagy.","authors":"Mengjun Huang, Hanqi Lei, Tongyu Tong, Hailin Zou, Binyuan Yan, Fei Cao, Yiting Wang, Qiliang Teng, Bin Xu, Juan Luo, Yupeng Guan, Shaohong Lai, Peng Li, Jun Pang","doi":"10.1111/cpr.70091","DOIUrl":"https://doi.org/10.1111/cpr.70091","url":null,"abstract":"<p><p>Mitochondrial stress-induced mitophagy plays a critical role to maintain cellular homeostasis; however, in cancer cells, this process may also contribute to drug resistance. Our previous work identified CDK12 as a critical regulator of prostate cancer (PCa) cell survival under sustained enzalutamide exposure, though the precise mechanism remains to be elucidated. In this study, we hypothesize that CDK12 plays a key role in mitophagy regulation under mitochondrial stress, potentially modulating PCa cell resistance to enzalutamide, the first-line clinical medication in PCa therapy. Utilising multiple in vitro PCa cell models, we demonstrate that both CDK12 knockdown and pharmacological inhibition with THZ531 impaired mitophagy following treatment with enzalutamide and mitophagy inducer CCCP. Mechanistically, our finding reveal that CDK12 inhibition disrupts FOXO3-induced BNIP3 transcription, thereby preventing receptor-mediated mitophagy and sensitising PCa cells to enzalutamide. This study identifies the CDK12-FOXO3-BNIP3 pathway as a novel regulatory mechanism governing mitophagy under mitochondrial stress. Importantly, these results underscore CDK12's role in preserving mitochondrial function and promoting PCa cell survival during enzalutamide treatment. These findings highlight the therapeutic potential of targeting the CDK12-BNIP3-mitophagy axis in combination with antiandrogen therapies, offering a promising strategy to overcome drug resistance in PCa and improve clinical outcomes.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70091"},"PeriodicalIF":5.9,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-Nucleus Transcriptomics Uncovers Xaf1-Driven PANoptosis as a Therapeutic Target in Aminoglycoside-Induced Hearing Loss.","authors":"Xinlin Wang, Hairong Xiao, Jiheng Wu, Yanqin Lin, Yiheng Ao, Zixuan Ye, Xin Tan, Fanliang Kong, Xin Chen, Renjie Chai, Shasha Zhang","doi":"10.1111/cpr.70081","DOIUrl":"https://doi.org/10.1111/cpr.70081","url":null,"abstract":"<p><p>Aminoglycoside antibiotics are essential in managing many life-threatening diseases. However, their derivatives, such as neomycin, are associated with severe side effects such as persistent sensorineural hearing loss. Therefore, it is essential to elucidate the molecular and biochemical mechanisms of aminoglycoside-induced ototoxicity and identify targets for alleviating ototoxic injury. Here, we provide a detailed cochlear cell atlas of neomycin-induced acute and chronic ototoxicity-related changes through single-nucleus RNA sequencing profiling. Utilising this cochlear cell atlas, we used the Augur and scDist algorithms to evaluate cell-type-specific susceptibility to neomycin injury. We observed aberrant expression of X-linked inhibitor of apoptosis (Xiap)-associated factor 1 (Xaf1) in neomycin-exposed cochleae using the cochlear cell atlas, and we identified a novel role for Xaf1 in facilitating PANoptosis through overexpression and knockdown assays in vitro. Finally, we assessed the protective role of Xaf1 against neomycin-induced ototoxicity by Xaf1 knockdown in cochlear hair cells using adeno-associated virus-based gene delivery. Mechanistically, Xaf1 orchestrates PANoptosis activation through direct interaction with and transcriptional regulation of ZBP1, establishing its hierarchical position upstream in the signalling cascade. This study presents detailed cochlear cellular maps of neomycin-induced ototoxicity and serves as a valuable resource for identifying transcriptome-wide disease-driving perturbations at the single-cell level. More importantly, we identified Xaf1 as a critical target for modulating the PANoptosis pathway, offering a promising treatment strategy for aminoglycoside-induced ototoxicity.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70081"},"PeriodicalIF":5.9,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144539138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangfang Huang, Xiang Luo, Mengyu Zhang, Le Jin, Wenxin Sun, Peihan Chen, Xiuli Hong, Chenyu Xu, Meizhi Jiang, Die Hu, Bin Zhang, Shengwei Hu, Chuanjiang Yang, Rui Gao, Jinzhang Zeng, Quanyi Lu, Qiang Luo, Jun Wu, Siming Chen
{"title":"Homoharringtonine Promotes FTO Degradation to Suppress LILRB4-Mediated Immune Evasion in Acute Monocytic Leukaemia.","authors":"Fangfang Huang, Xiang Luo, Mengyu Zhang, Le Jin, Wenxin Sun, Peihan Chen, Xiuli Hong, Chenyu Xu, Meizhi Jiang, Die Hu, Bin Zhang, Shengwei Hu, Chuanjiang Yang, Rui Gao, Jinzhang Zeng, Quanyi Lu, Qiang Luo, Jun Wu, Siming Chen","doi":"10.1111/cpr.70090","DOIUrl":"https://doi.org/10.1111/cpr.70090","url":null,"abstract":"<p><p>Acute monocytic leukaemia, a subtype of acute myeloid leukaemia (AML), is a highly aggressive malignancy characterised by a poor prognosis, primarily due to the ability of leukaemic cells to evade immune surveillance. In this study, we demonstrate that homoharringtonine (HHT), an FDA-approved therapeutic agent for chronic myeloid leukaemia (CML), inhibits this immune evasion by targeting the FTO/m6A/LILRB4 signalling pathway in monocytic AML. Utilising RNA sequencing (RNA-seq) and various functional assays, we reveal that HHT treatment significantly reduces LILRB4 expression at both the RNA and protein levels, suggesting that the effects of HHT on LILRB4 are distinct from its well-established role as a protein synthesis inhibitor. Mechanistically, HHT treatment markedly increases global levels of RNA m6A in THP-1 cells by promoting the degradation of FTO, which subsequently diminishes the expression of its downstream targets, MLL1 and LILRB4. Furthermore, in vitro and in vivo analyses employing monocytic AML cell lines, mouse-derived AML xenograft models, and patient samples collectively support the conclusion that HHT suppresses immune evasion in monocytic AML by reducing LILRB4 expression. Importantly, the downregulation of LILRB4 resulting from HHT treatment enhances the susceptibility of THP-1 cells to CD8<sup>+</sup> T cell cytotoxicity, accompanied by increased markers of immune activation. Overall, our findings position HHT as a promising clinical agent for enhancing CD8<sup>+</sup> T cell-based cancer immunotherapy by mitigating immune evasion in monocytic AML.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70090"},"PeriodicalIF":5.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144539137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Qin, Chong Wang, Sihan Li, Yanyan Wang, Tingting He, Jianwei Jiao, Fen Ji
{"title":"Myeloid PD-1 Regulates Astrocyte Development and Leads to Active Behaviours.","authors":"Jie Qin, Chong Wang, Sihan Li, Yanyan Wang, Tingting He, Jianwei Jiao, Fen Ji","doi":"10.1111/cpr.70082","DOIUrl":"https://doi.org/10.1111/cpr.70082","url":null,"abstract":"<p><p>During early brain development, the nervous system evolves as cells connect to form a unique neural network, with communication between cell populations vital for neurological balance. This study investigates how the loss of PD-1 in myeloid cells disrupts nervous system development. Specific ablation of PD-1 affects myeloid cell proliferation and classification. As astrogenesis begins, astrocyte proliferation ceases, continuous astrocyte proliferation is observed. Immunofluorescence staining revealed high expression of astrocyte-related genes in PD-1<sup>f/f; LysM-Cre</sup> mice, which also exhibited more extroverted behaviour. Additionally, the absence of PD-1 enhances CXCL1 expression through the NF-κB pathway, promoting astrocyte proliferation by interacting with CXCR2. These findings underscore PD-1's regulatory role in myeloid cells and its implications for the myeloid-brain axis.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70082"},"PeriodicalIF":5.9,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144526588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LncRNA H19-Encoded Micropeptide altH19 Promotes DNA Replication and Mitosis in Myeloma Cells by Enhancing the Phosphorylation of CDK2 at Threonine 160.","authors":"Yaxin Zhang, Wenjing Li, Xu Cao, Jiwei Mao, Xiaodan Zhou, Linlin Liu, Ruosi Yao","doi":"10.1111/cpr.70089","DOIUrl":"https://doi.org/10.1111/cpr.70089","url":null,"abstract":"<p><p>Micropeptides are endogenous peptides translated from alternative open reading frames (alt-ORFs) within coding or non-coding genes. Emerging evidence suggests that some micropeptides play critical roles in both physiological and pathological processes. Multiple myeloma (MM), a haematological malignancy, remains incurable due to frequent relapses and a limited understanding of its underlying mechanisms. In this study, we sought to investigate the function and molecular mechanism of a novel micropeptide in MM pathogenesis. We identified a novel micropeptide, altH19, encoded by the lncRNA H19, which is highly expressed in patients of MM. Functional assays revealed that altH19 promotes myeloma cell proliferation and colony formation significantly. Furthermore, altH19 induces multipolar mitosis by upregulating the expression of Aurora B, Centrin 2 and phosphorylated histone H3. Flow cytometry analyses confirmed that overexpression of altH19 enhances DNA replication and accelerates the transition from early to mid-late stages of the DNA replication process. Conversely, knockout of altH19 reverses these effects. Mechanistically, altH19 directly interacts with phosphorylated CDK2 at threonine 160, thereby enhancing CDK2 T160 phosphorylation and activating the downstream E2F1 target RB phosphorylation. Notably, altH19 was able to restore phosphorylation levels of CDK2 and RB that were otherwise suppressed by the CDK2-selective inhibitor Seliciclib. In summary, we identify altH19 as a novel lncRNA-derived micropeptide with a pivotal role in myeloma progression, highlighting the therapeutic potential of targeting the altH19-CDK2-RB axis in MM treatment.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70089"},"PeriodicalIF":5.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144511612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Hu, Yawen Tang, Wei Zhao, Juan Liu, Zhize Liu, Qianyin Yang, Meiqiang Chu, Jianhui Tian, Lei An, Shumin Wang
{"title":"Lactate Promotes the Second Cell Fate Decision in Blastocysts by Prompting Primitive Endoderm Formation Through an Intercellular Positive Feedback Loop That Couples Paracrine FGF Signalling.","authors":"Xiao Hu, Yawen Tang, Wei Zhao, Juan Liu, Zhize Liu, Qianyin Yang, Meiqiang Chu, Jianhui Tian, Lei An, Shumin Wang","doi":"10.1111/cpr.70088","DOIUrl":"https://doi.org/10.1111/cpr.70088","url":null,"abstract":"<p><p>Lactate has been widely recognised as an energy source and metabolic by-product, but increasing evidence supports its critical role as a signalling molecule or epigenetic substrate. During early embryogenesis, lactate production increases during the transition from early to late blastocyst, coinciding with the differentiation of inner mass cell (ICM) into epiblast (EPI) and primitive endoderm (PrE), termed the second cell fate decision. However, the role of this hallmark metabolic change in the second cell fate segregation remains unknown. Herein, using in vitro and in vivo models, we found lactate production is preferentially increased in PrE cells and is essential for ICM differentiation into PrE. Mechanically, increased lactate in PrE precursor cells and FGF signalling in EPI precursor cells reciprocally activate each other and synergise to prompt PrE specification, forming an intercellular positive feedback loop essential for this lineage commitment. Additionally, lactate enhanced histone lactylation levels during differentiation into PrE fate. Thus, our findings construct a complex multilayer model in which intracellular metabolite in PrE cooperates with intercellular growth factor signalling from EPI to regulate early embryonic lineage commitment. Highlighting the multifaceted lactate's function, our findings also advance the current knowledge that bridges epigenetic reprogramming and metabolic remodelling during early embryonic development.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70088"},"PeriodicalIF":5.9,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144511611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingming Fan, Hongyu Wu, Yuan Xie, Ming Liu, Xin Yu, Feiyang Wang, Zhenyu Xiao, Hongmei Wang, Xuan Shao, Yan-Ling Wang
{"title":"Maternal Nutritional Status Governs Fetal Development by Modulating Imprinting Gene GAB1-Mediated Trophoblast Differentiation in the Placenta.","authors":"Mingming Fan, Hongyu Wu, Yuan Xie, Ming Liu, Xin Yu, Feiyang Wang, Zhenyu Xiao, Hongmei Wang, Xuan Shao, Yan-Ling Wang","doi":"10.1111/cpr.70069","DOIUrl":"https://doi.org/10.1111/cpr.70069","url":null,"abstract":"<p><p>The appropriate allocation of nutrients between the mother and the fetus during mammalian pregnancy primarily depends on a healthy placenta. Fetal growth restriction (FGR) is frequently associated with inadequate maternal nutrition supply and impaired placental function. The precise mechanisms linking maternal nutrient deficiency to compromised fetal and placental development remain largely elusive. In this study, we conducted an in-depth analysis by integrating single-cell/single-nucleus RNA sequencing data from human and mouse placentas along with transcriptomic data from FGR placenta, identifying the GAB1 (GRB2-associated binding protein 1) gene as a potential mediator of dysregulated maternal-fetal exchange, thereby affecting fetal growth. Using a mouse model, we demonstrated that food restriction significantly impeded fetal growth and disrupted placental labyrinth development. Through an in vitro trophoblast differentiation model, we revealed that nutritional restriction impaired GAB1 stability via LC3-interacting region (LIR) motif-mediated selective autophagic degradation, thereby hindering GAB1-MAPK signalling-enhanced trophoblast syncytialisation. These findings elucidate the mechanisms by which placental GAB1 links maternal nutrition status with fetal growth and suggest potential therapeutic strategies for managing pregnancy complications such as FGR.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70069"},"PeriodicalIF":5.9,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144474078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"Targeting RORα in Macrophages to Boost Diabetic Bone Regeneration\".","authors":"","doi":"10.1111/cpr.70084","DOIUrl":"10.1111/cpr.70084","url":null,"abstract":"","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70084"},"PeriodicalIF":5.9,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Liu, Qingru Song, Chen Li, Jiexin Yan, Ni An, Wenzhen Yin, Jinmei Diao, Yuxin Su, Yunfang Wang
{"title":"Deciphering Age-Dependent ECM Remodelling in Liver: Proteomic Profiling and Its Implications for Aging and Therapeutic Targets.","authors":"Juan Liu, Qingru Song, Chen Li, Jiexin Yan, Ni An, Wenzhen Yin, Jinmei Diao, Yuxin Su, Yunfang Wang","doi":"10.1111/cpr.70087","DOIUrl":"10.1111/cpr.70087","url":null,"abstract":"<p><p>Aging is characterised by progressive structural and functional changes in the liver, with the extracellular matrix (ECM) playing a key role in modulating these changes. Our study presents a comprehensive proteomic analysis of the liver ECM across different age stages, uncovering significant age-related changes. Through the identification of 158 ECM proteins in decellularised rat liver scaffolds, we reveal the intricate relationship between ECM composition and liver maturation, as well as the decrease in regenerative capacity. Lumican was identified as a critical regulator with heightened expression in neonatal livers, which is associated with enhanced hepatocyte proliferation and maintenance of stem cell characteristics. Temporal expression analysis distinguished four distinct clusters of ECM proteins, each reflecting the liver's functional evolution from early development to old age. Early developmental stages were marked by proteins essential for liver growth, while adulthood was characterised by a robust ECM supporting metabolic functions. Middle age showed a regulatory shift towards protease balance, and later life was associated with haemostasis-related processes. Our findings underscore the multifaceted role of the ECM in liver health and aging, offering potential opportunities for therapeutic intervention to counteract age-induced liver dysfunction. This study provides a foundational understanding of ECM dynamics in liver aging and sets the stage for the development of innovative strategies to mitigate the effects of age-related liver decline.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70087"},"PeriodicalIF":5.9,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}